311 research outputs found

    The Changes of Skin Temperature on Hands and Feet During and after T3 Sympathicotomy for Palmar Hyperhidrosis

    Get PDF
    Unilateral thoracic sympathectomy in patients with palmar hyperhidrosis causes a skin temperature drop in the contralateral hand. A cross-inhibitory effect by the post-ganglionic neurons innervating hands is postulated as a mechanism of contralateral vasoconstriction. The purpose of our study was to evaluate whether this cross-inhibitory effect also occurs in the feet. Twenty patients scheduled for thoracoscopic sympathicotomy due to palmar hyperhidosis were studied. Right T3 sympathicotomy was performed first, followed by left T3 sympathicotomy. The thenar skin temperatures of both hands and feet were continuously monitored using a thermometer and recorded before induction of anesthesia, during the operation, 4 hr after and 1 week later. Following right T3 sympathicotomy, the skin temperature of the ipsilateral hand gradually increased, however the skin temperature of the contralateral hand gradually decreased. Immediately after bilateral sympathicotomy, the skin temperature differences between hands and feet increased, but these differences decreased 1 week later. Our results show that cross-inhibitory control may exist in feet as well as in the contralateral hand. Thus, the release of cross-inhibitory control following T3 sympathicotomy results in vasoconstriction and decrease of skin temperature on the contralateral hand and feet. One week later, however, the temperature balance on hands and feet recovers

    Transient shivering during Wada test provides insight into human thermoregulation

    Full text link
    Some patients with pharmacoresistant epilepsy undergoing the Wada test experience transient shivering. The purpose of this study was to investigate various clinical and radiographic characteristics of these individuals to delineate underlying mechanisms of this phenomenon.A systematic review of prospectively collected information on patients undergoing the Wada test was performed. All demographic, clinical, and radiographic information was obtained and reviewed by the appropriate expert in the field; statistical analysis was performed to determine the predictors of transient shivering.A total of 120 consecutive carotid artery injections in 59 patients were included in the study. Shivering was observed in 46% of the patients, and it was not significantly affected by gender, age, location of epileptogenic zone, brain lesion on magnetic resonance imaging (MRI), side of the first injection, duration of the hemiparesis, or excess slow wave activity on electroencephalography (EEG). However, shivering was more likely to follow sodium amobarbital injection if there was no filling of the posterior circulation on cerebral angiogram.Transient shivering during the Wada test is common. A transient but selective functional lesion of the anterior hypothalamus produced by the effects of sodium amobarbital may result in disinhibition of the posterior hypothalamus and other brainstem thermoregulatory centers, thereby inducing transient shivering.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78595/1/j.1528-1167.2009.02398.x.pd

    Voluntary exercise can strengthen the circadian system in aged mice

    Get PDF
    Consistent daily rhythms are important to healthy aging according to studies linking disrupted circadian rhythms with negative health impacts. We studied the effects of age and exercise on baseline circadian rhythms and on the circadian system's ability to respond to the perturbation induced by an 8 h advance of the light:dark (LD) cycle as a test of the system's robustness. Mice (male, mPer2luc/C57BL/6) were studied at one of two ages: 3.5 months (n = 39) and >18 months (n = 72). We examined activity records of these mice under entrained and shifted conditions as well as mPER2::LUC measures ex vivo to assess circadian function in the suprachiasmatic nuclei (SCN) and important target organs. Age was associated with reduced running wheel use, fragmentation of activity, and slowed resetting in both behavioral and molecular measures. Furthermore, we observed that for aged mice, the presence of a running wheel altered the amplitude of the spontaneous firing rate rhythm in the SCN in vitro. Following a shift of the LD cycle, both young and aged mice showed a change in rhythmicity properties of the mPER2::LUC oscillation of the SCN in vitro, and aged mice exhibited longer lasting internal desynchrony. Access to a running wheel alleviated some age-related changes in the circadian system. In an additional experiment, we replicated the effect of the running wheel, comparing behavioral and in vitro results from aged mice housed with or without a running wheel (>21 months, n = 8 per group, all examined 4 days after the shift). The impact of voluntary exercise on circadian rhythm properties in an aged animal is a novel finding and has implications for the health of older people living with environmentally induced circadian disruption

    Neural Substrate of Cold-Seeking Behavior in Endotoxin Shock

    Get PDF
    Systemic inflammation is a leading cause of hospital death. Mild systemic inflammation is accompanied by warmth-seeking behavior (and fever), whereas severe inflammation is associated with cold-seeking behavior (and hypothermia). Both behaviors are adaptive. Which brain structures mediate which behavior is unknown. The involvement of hypothalamic structures, namely, the preoptic area (POA), paraventricular nucleus (PVH), or dorsomedial nucleus (DMH), in thermoregulatory behaviors associated with endotoxin (lipopolysaccharide [LPS])-induced systemic inflammation was studied in rats. The rats were allowed to select their thermal environment by freely moving in a thermogradient apparatus. A low intravenous dose of Escherichia coli LPS (10 µg/kg) caused warmth-seeking behavior, whereas a high, shock-inducing dose (5,000 µg/kg) caused cold-seeking behavior. Bilateral electrocoagulation of the PVH or DMH, but not of the POA, prevented this cold-seeking response. Lesioning the DMH with ibotenic acid, an excitotoxin that destroys neuronal bodies but spares fibers of passage, also prevented LPS-induced cold-seeking behavior; lesioning the PVH with ibotenate did not affect it. Lesion of no structure affected cold-seeking behavior induced by heat exposure or by pharmacological stimulation of the transient receptor potential (TRP) vanilloid-1 channel (“warmth receptor”). Nor did any lesion affect warmth-seeking behavior induced by a low dose of LPS, cold exposure, or pharmacological stimulation of the TRP melastatin-8 (“cold receptor”). We conclude that LPS-induced cold-seeking response is mediated by neuronal bodies located in the DMH and neural fibers passing through the PVH. These are the first two landmarks on the map of the circuitry of cold-seeking behavior associated with endotoxin shock

    Alterations in glutamatergic signaling contribute to the decline of circadian photoentrainment in aged mice

    Get PDF
    Robust physiological circadian rhythms form an integral part of well-being. The aging process has been found to negatively impact systems that drive circadian physiology, typically manifesting as symptoms associated with abnormal/disrupted sleeping patterns. Here, we investigated the age-related decline in light-driven circadian entrainment in male C57BL/6J mice. We compared light-driven resetting of circadian behavioral activity in young (1e2 months) and old (14e18 months) mice and explored alterations in the glutamatergic pathway at the level of the circadian pacemaker, the suprachiasmatic nucleus (SCN). Aged animals showed a significant reduction in sensitivity to behavioral phase resetting by light. We show that this change was through alterations in N-Methyl-D-aspartate (NMDA) signaling at the SCN, where NMDA, a glutamatergic agonist, was less potent in inducing clock resetting. Finally, we show that this shift in NMDA sensitivity was through the reduced SCN expression of this receptor’s NR2B subunit. Only in young animals did an NR2B antagonist attenuate behavioral resetting. These results can help target treatments that aim to improve both physiological and behavioral circadian entrainment in aged populations

    Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles

    Get PDF
    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response

    The aging clock: circadian rhythms and later life

    Get PDF
    Circadian rhythms play an influential role in nearly all aspects of physiology and behavior in the vast majority of species on Earth. The biological clockwork that regulates these rhythms is dynamic over the lifespan: rhythmic activities such as sleep/wake patterns change markedly as we age, and in many cases they become increasingly fragmented. Given that prolonged disruptions of normal rhythms are highly detrimental to health, deeper knowledge of how our biological clocks change with age may create valuable opportunities to improve health and longevity for an aging global population. In this Review, we synthesize key findings from the study of circadian rhythms in later life, identify patterns of change documented to date, and review potential physiological mechanisms that may underlie these changes
    corecore