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Abstract Consistent daily rhythms are important to
healthy aging according to studies linking disrupted
circadian rhythms with negative health impacts. We
studied the effects of age and exercise on baseline circa-
dian rhythms and on the circadian system's ability to
respond to the perturbation induced by an 8 h advance
of the light:dark (LD) cycle as a test of the system's
robustness. Mice (male, mPer2luc/C57BL/6) were stud-
ied at one of two ages: 3.5 months (n=39) and
>18 months (n=72). We examined activity records of
thesemice under entrained and shifted conditions as well
as mPER2::LUC measures ex vivo to assess circadian

function in the suprachiasmatic nuclei (SCN) and impor-
tant target organs. Age was associated with reduced
running wheel use, fragmentation of activity, and slowed
resetting in both behavioral and molecular measures.
Furthermore, we observed that for aged mice, the pres-
ence of a running wheel altered the amplitude of the
spontaneous firing rate rhythm in the SCN in vitro.
Following a shift of the LD cycle, both young and aged
mice showed a change in rhythmicity properties of the
mPER2::LUC oscillation of the SCN in vitro, and aged
mice exhibited longer lasting internal desynchrony.
Access to a running wheel alleviated some age-related
changes in the circadian system. In an additional exper-
iment, we replicated the effect of the running wheel,
comparing behavioral and in vitro results from aged
mice housed with or without a running wheel
(>21 months, n=8 per group, all examined 4 days after
the shift). The impact of voluntary exercise on circadian
rhythm properties in an aged animal is a novel finding
and has implications for the health of older people living
with environmentally induced circadian disruption.
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Introduction

Aging can impact circadian (daily) rhythms leading to
impaired sleep and activity cycles. Older adults show

AGE
DOI 10.1007/s11357-012-9502-y

Electronic supplementary material The online version of this
article (doi:10.1007/s11357-012-9502-y) contains
supplementary material, which is available to authorized users.

M. E. Harrington (*) : P. C. Molyneux : I. Song :
H. Queenan : E. Zimmerman
Neuroscience Program, Smith College,
Northampton, MA 01063, USA
e-mail: mharring@smith.edu

T. L. Leise
Mathematics Department, Amherst College,
Amherst, MA 01002, USA

G. S. Lall
Medway School of Pharmacy, University of Kent,
Central Avenue, Chatham,
Kent ME4 4TB, UK

S. M. Biello
School of Psychology, University of Glasgow,
Glasgow G12 8QB Scotland, UK

http://dx.doi.org/10.1371/journal.pone.0010995


reduced amplitude of rhythms (Münch et al. 2005),
manifested most obviously as disrupted sleep. Healthy
older adults can exhibit dysfunctions of sleep and
wake, including difficulty initiating sleep, frequent
nighttime awakenings, and early morning wake times
(Buysse et al. 2005). These observed alterations in the
daily rhythm of sleep and wake are attributable to
changes in the interplay between homeostatic sleep
mechanisms and circadian clock parameters (Dijk et
al. 2000). In addition, aging of the clock affects mood
and memory and contributes to age-associated cogni-
tive decline (Nebes et al. 2009; Grandner et al. 2012).
Decreased locomotor activity rhythm amplitude is as-
sociated with increased risk of mortality (Tranah et al.
2010), and sleep loss in the elderly has been linked to
increased incidence of falls, accidents, poor health
status, and mortality (Ancoli-Israel and Alessi 2005;
Foley et al. 1995; Foley et al. 1999). These findings
suggest a possible link between deficits in circadian
rhythmicity and less successful aging, although the
data are corelational so a causal relationship cannot
be inferred in many of these human studies.

Rodents also show significant changes in circadian
function with age, including reduced amplitude of
output rhythms, providing an excellent model through
which to study the basic mechanisms of age-related
changes in the circadian clock. Earlier work found
changes in a number of circadian parameters in the
activity of C57BL/6 mice with senescence in vivo
(Valentinuzzi et al. 1997). The central circadian pace-
maker in mammals is located within the suprachias-
matic nuclei (SCN) in the hypothalamus (Rusak and
Zucker 1979). The network of neurons in the SCN
generates an approximately 24-h oscillation via tran-
scriptional–translational feedback loops of clock gene
expression and also exhibits daily patterns in neuronal
firing rate. The amplitude and phase synchrony of
electrical activity of SCN neurons are affected by
age in rats and mice (Farajnia et al. 2012; Nakamura
et al. 2011; Satinoff et al. 1993). While aspects of
input pathways or SCN cell response are impaired in
aged animals (Benloucif et al. 1997; Biello 2009;
Zhang et al. 1996; 1998), some specific deficits seen
in circadian behavior of aged mice might be attribut-
able to deficits not within the clock mechanism but in
communication from the molecular clock to output
targets. This is supported by studies showing unaltered
rhythms in core clock genes per1 and per2 in the SCN
of aged animals (Kolker et al. 2003), yet with dramatic

changes seen in neuronal firing rate output rhythms
(Nakamura et al. 2011; Satinoff et al. 1993) as well as
in behavioral rhythms (Valentinuzzi et al. 1997).

Communication from the clock to output targets is
necessary to maintain the internal phase relationships
of the peripheral and central circadian clocks that
comprise the circadian system. Several prior studies
using rats with a bioluminescent reporter for the clock
gene per1 (Davidson et al. 2008; Yamazaki et al.
2002) indicate that, in vitro, some peripheral tissues
show altered phase with the light:dark (LD) cycle in
aged rats and some peripheral tissues seem to have
markedly damped rhythmicity. If advancing age neg-
atively affects communication from central to periph-
eral clocks, we would expect a deficit in the response
to a shift in the entraining light cycle. The current
understanding of “jet lag” following a shift of the
entraining cycle is that it arises from a failure of the
SCN clock to rapidly transmit the shifted clock signal
to peripheral tissues (Yamazaki et al. 2000), with
coincident disruption among cell populations within
the SCN (Davidson et al. 2009; Nagano et al. 2003;
Nakamura et al. 2005). Circadian clocks in extra-SCN
brain regions as well as those outside the central
nervous system shift at varied rates (Kiessling et al.
2010; Yamazaki et al. 2000), leading to a state of
internal temporal desynchrony that may impair cogni-
tion and health (Castanon-Cervantes et al. 2010; Lee et
al. 2010; Martino et al. 2008; Karatsoreos et al. 2011;
Cho 2001). Central and peripheral oscillators respond
to a shift of the light cycle differently in young and
aged mice, providing further evidence that aging alters
circadian function (Sellix at al. 2012). To test if age
impacts circadian clock output, we can track resynch-
ronization to a shifted LD cycle using both behavioral
measures in vivo and bioluminescent mPER2::LUC
ex vivo (Yoo et al. 2004) to assess phase and rhyth-
micity of SCN and peripheral oscillators. These meas-
ures provide a window into the dynamics of
resynchronization of the entire circadian system and
assessment of any age-related deficits.

We hypothesized that aged mice will demonstrate
deficits in resynchronization following an 8 h advance
in the LD cycle, either in total time required for complete
circadian system resynchronization and/or in degree of
internal desynchrony during the time period of phase
shift dynamics. To test this hypothesis, we monitored
motion and wheel-running activity of mPer2luc mice and
recorded PER2::LUC bioluminescence rhythms in the
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SCN and three important target organs. We further hy-
pothesized that there would be no deficits in cycling of
SCN mPER2::LUC in aged control unshifted mice, giv-
en prior research that has not indicated appreciable def-
icits in period gene cycling in aged animals (Asai et al.
2001; Kolker et al. 2003; Nakamura et al. 2011;
Yamazaki et al. 2002). A prior study suggested that age
affected the rate of resynchronization of peripheral tar-
gets but did not alter SCN resetting dynamics in Per1-luc
rats (Davidson et al. 2008), supporting a hypothesis that
age-related deficits will be restricted to target tissues but
will not be observed in the SCN.

To explore ways to counteract age-associated
changes, we tested if access to a running wheel could
have a beneficial effect on the temporal organization
of the circadian system in mice under control condi-
tions as well as in response to the LD shift. Exercise
can lessen the negative impact of age on learning and
memory, neurogenesis, and motor behavior in mice
(Marlatt et al. 2012). Running wheels can alter key
properties of rodent circadian rhythms such as period
and rate of resynchronization (Castillo et al. 2011;
Harrington et al. 2007) and exercise can also benefit
consolidation of sleep and activity rhythms in people
(King et al. 1997; Passos et al. 2011; Reid et al. 2010).
Here, we determined if naturally increased activity by
voluntary use of a running wheel altered effects of age
on circadian system dynamics using electrophysiolog-
ical, molecular, and behavioral measures.

Methods

Electrophysiological experiments

Fourteen male C57BL/6 mice (University of Glasgow)
were housed under an LD schedule of 12:12 h. While
they had all experienced a wheel in their cage at
various times between 4 and 6 months of age, for the
9–11 months prior to the beginning of this experiment,
these mice had no wheel exposure. At the start of this
experiment, seven mice were placed in cages contain-
ing running wheels, while the other seven remained in
their home cage with no wheel.

Mice (18–20 months) were administered an over-
dose of halothane anesthesia and decapitated during
the phases when this manipulation does not induce
phase shifts (Gillette 1986), in most cases, between
Zeitgeber Time (ZT) 2 and 5. Hypothalamic slices

(500 μm) containing the SCN were placed in a gas–
fluid interface slice chamber (Medical Systems BSC
with Haas top), continuously bathed (1 ml/min) in
artificial cerebrospinal fluid (ACSF) containing
125.2 mM NaCl, 3.8 mM KCl, 1.2 mM KH2PO4,
1.8 mM CaCl2, 1 mM MgSO4, 24.8 mM NaHCO3,
and 10 mM glucose. ACSF (pH 7.4) was maintained
at 34.5 °C. Warm, humidified 95 % oxygen:5 % car-
bon dioxide was continuously provided.

Extracellular single unit activity of SCN cells was
detected with glass micropipette electrodes filled with
ACSF, advanced through the slice using a hydraulic
microdrive. The electrode was placed into regions of
the SCN at random, alternating between the left and
right SCN. The signal was fed into an amplifier for
further amplification and filtering and was continuous-
ly monitored by an oscilloscope and audio monitor.
Firing rate and interspike interval data were analyzed
using Spike (Cambridge Electronic Design Ltd.,
Cambridge, UK) data acquisition software and a cus-
tomized program for calculation of descriptive statis-
tics. The average spontaneous firing rate and the ZT
for each single unit encountered was recorded for 4–
5 min by an experimenter blind to the condition.

Recordings were typically performed for 8–12 h
during ZT 0–12 of the second 24 h in vitro. One slice
from each old mouse (n=7) with a wheel and each old
mouse (n=7) without a wheel were monitored contin-
uously for 32 h from ZT 0 of the first day in vitro.

Behavioral and bioluminescence experiments

Mice (male, mPer2luc/+ and mPer2luc/luc on a C57BL/6
background; total n=120) were bred in-house (Smith
College) from founders from Dr. J. Takahashi
(University of Texas Southwestern). In the first exper-
iment, mice were studied at one of two ages: 105±
3 days (n=39) or 579±5 days (n=72). Mice were
individually housed and behavioral activity rhythms
were measured by monitoring of a running wheel
installed in each cage as well as by a motion sensor
positioned on the cage lid, connected to a computer
running ClockLab software (Actimetrics Inc.,
Wilmette, IL, USA). Following entrainment to a LD
cycle 12:12 (light intensity: 350–400 lx), the LD cycle
was phase advanced by 8 h via a short night. At
various times throughout the experiment, mice were
euthanized for recording of tissue rhythms in vitro.
The mouse was taken from its cage within an hour
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of ZT 2 of the original entraining cycle and ZT 10 of
the phase advanced cycle (ZT 12 is defined as the time
of lights off), based on prior research showing that
dissection in this time window does not reset phase
(Davidson et al. 2009). Mice were euthanized either
prior to the LD shift or on Days 2, 4, and 9, following
the LD shift. Control unshifted mice were euthanized
between ZT 2 and 10 with the exception of two sub-
groups of aged mice housed with running wheels that
were euthanized either ZT2–3 or between ZT 10 and
11 to check for time of dissection effects in the aged
mice. Mice were overdosed with isoflurane anesthesia
and the brain was quickly removed and sections
(300 μm) containing the SCN were collected using a
vibratome. Tissue samples from the spleen, thymus,
and esophagus were collected as well. All tissue sam-
ples were placed on culture inserts (Millipore,
Billerica, MA, USA) and placed in a 35-mm petri dish
containing 1.2 ml of culture media, as described in
Guenthner et al. (2009). Rhythms in bioluminescence
were monitored using a Lumicycle (Actimetrics Inc.,
Wilmette, IL, USA). We compared aged mice housed
without running wheels to aged and young mice
housed with running wheels. Of the 111 animals used
in the first experiment, mice were distributed to con-
ditions as follows: aged mice housed without running
wheels: controls: n=9, Day 4: n=8, Day 9: n=5; aged
mice housed with running wheels: controls: n=17,
Day 2: n=12, Day 4: n=11, Day 9: n=6; young
mice housed with running wheels: controls: n=10,
Day 2: n=13, Day 4: n=10, Day 9: n=6.

In a second experiment, aged mice (male,
mPer2luc/+ and mPer2luc/luc, 626 to 652 days old on
the day of euthanasia) were housed individually with
a motion sensor positioned on the cage lid. Nine mice
were housed with a running wheel and nine mice had
no running wheel. Mice were under a LD cycle 12:12
(light intensity: 350–400 lx) for 2 months before
receiving a phase advance shift of 8 h. On Day 4,
after the LD shift, eight mice from each group were
euthanized and tissues prepared as described above
for bioluminescent recording.

Data analysis methods

For electrophysiological data, the average firing rate of
each cell recorded from each slicewas plotted against the
ZT of the recording. Slices without significant differ-
ences across firing rate data grouped into 1 (ZT)-h bins

(p<0.05; Analysis of variance (ANOVA)) were not used
for further analysis (n=1). If there were significant dif-
ferences, data were smoothed by 1-h runningmeanswith
a 15-min lag. The time corresponding to the maximum
of the smoothed data was used as the time of the peak
firing. A significant difference between the two groups
(p<0.05) was determined by a t test (n=7 per group).

Activity and bioluminescence time series were an-
alyzed using custom scripts as described in Leise and
Harrington (2011), run in MATLAB 7.14.0 (The
MathWorks, Natick, MA, USA) and calling routines
from the wmtsa package (Charles R. Cornish, http://
www.atmos.washington.edu/~wmtsa/). The discrete
wavelet transform (DWT) decomposes a time series
into components corresponding to different frequency
bands in a time-localized manner, thereby isolating the
circadian component to effectively remove trend and
noise. This also partitions the variance (energy) of a
time series according to the frequency band, so that the
circadian component can be quantitatively compared
to that of the ultradian components. We applied a
translation-invariant DWT with the Daubechies least-
asymmetric filter with length of 12 to 4-day-long
activity records with 30-min bins using periodic
boundary conditions and starting and ending in the
middle of rest intervals to minimize edge effects. We
also applied this DWT to PER2::LUC biolumines-
cence time series (10-min time steps) to extract the
circadian component, which we used to determine
times of peak luminescence in tissue explants.

Circular statistics were computed using the CircStat
toolbox (Berens 2009). Time in hours was converted to
angles in radians by multiplying by 2π/24. The circular

mean θ of n anglesαk is defined as θ ¼ arg 1
n

Pn

k¼1
eiak

� �

,

while the circular standard deviation is defined as

s ¼ ffiffiffiffiffiffiffiffiffiffiffiffi�2lnr
p

, where r is the synchronization index

r ¼ 1
n

Pn

k¼1
eiak

�
�
�
�

�
�
�
�.

To calculate the rhythmicity index (RI), we com-
puted the autocorrelation of 5-day-long biolumines-
cence time series and set RI to be the value at the
second peak (where the lag equals the period). A few
samples with outlier RI values (below 0.1) were dis-
carded (two SCN, three spleen, 11 esophagus, and one
thymus out of 127 total samples for each tissue).

Motion records were normalized for each animal by
dividing by the mean value over a 4-day window.
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Actograms were prepared in ClockLab software using
scale of 5 for motion sensor data and 25 for wheel
data. Multiple comparison ANOVA analyses use
Tukey's honestly significant difference criterion.

Results

Comparison of activity measures under entrained
conditions

The SCN output from aged mice with or without
wheels was compared using electrophysiological
measures. We assessed the value of the firing rate from
each slice at the time of the peak of the smoothed
curve fit to the data from that slice. Aged mice housed
with wheels (n=7) exhibited significantly higher peak
firing rate than aged mice without wheels (n=7): 5.02
±0.16 versus 4.06±0.07 Hz (mean±SEM, t test p<
0.001). The time of peak firing rate did not differ
between the two groups: ZT 30.3±0.1 versus ZT
30.4±0.1 (mean±SEM, t test p=0.19). See Fig. 1 for
representative examples.

The median patterns of normalized locomotor ac-
tivity were comparable in aged mice and younger mice
in the baseline condition of entrainment to LD12:12
(see Fig. 2a). However, aged mice wheel-ran signifi-
cantly less than young mice: 26±15 versus 65±19
mean wheel revolutions per half-hour bin (mean±
SD, t test p<0.001). See Fig. 2c. Furthermore, the
strength of circadian rhythmicity differed across the
groups, as measured by energy separated into frequen-
cy bands by a DWT (Leise and Harrington 2011) for
both motion and wheel-running activity (see Fig. 2b,
d). In particular, aged mice exhibit greater fragmenta-
tion of activity than young mice, as indicated by the
values in Fig. 2b for the energy in the scale 1,
corresponding to the time scale 0–3 h (p<0.001, F=
41, multiple comparison test). The energy in scales 2–
4 (3–16 h, corresponding to ultradian motion patterns)
is similar in young and aged mice, with or without a
wheel, but is quite different in the circadian scale 5 (p
<0.001, F=37, multiple comparison test), indicating a
weakened circadian rhythm in the activity of aged
mice. Both the reduced overall activity and increased
fragmentation of activity for aged mice are consistent
with previous findings (Valentinuzzi et al. 1997), as is
the delayed onset of activity at lights off for aged mice,
shown in Fig. 2c.

We also examined an alternative measure, the RI
(value of the autocorrelation sequence at lag=24 h) of
activity rhythms. The RI of motion under entrained
LD 12:12 conditions had a mean differing significant-
ly among the three groups (p<0.001, F=25, multiple
comparison test) and was positively correlated (r=
0.78, p<0.001) with the proportion of circadian ener-
gy for the DWT. RI<0.083 indicates that the motion
record did not exhibit significant circadian rhythmici-
ty. Motion records for 100 % of young mice were
significantly rhythmic (RI 0.42±0.02, mean±SEM),
93 % of aged mice with wheel (RI 0.30±0.02), 77 %
of aged mice without wheel (RI 0.19±0.03), compared
to 100 % of wheel records of young and aged mice (RI
0.63±0.01 and 0.48±0.02, respectively).

Differences in response to an 8 h advance of the LD
cycle

Following the 8 h advance of the LD cycle, the aged
mice required more days than young mice to adjust
their locomotor activity rhythms to a typical phase
relative to dark onset, as is shown for wheel-running

Fig. 1 Frequency of SCN cell firing rates represented by a 1-
h running mean with a 15-min lag over time for representative
slices recorded from two aged mice, one housed with and one
housed without a wheel. Data from a representative young
mouse has also been included for reference. Zeitgeber Time
(ZT) 12 is defined as the time of lights off in the animal's
previous light:dark cycle, so the trace shows data obtained from
recordings over 12 h in vitro. As is evident from the represen-
tative traces shown here, there was no difference between the
mean peak times slices from aged mice house with or without a
running wheel, although there was a significant difference in
amplitude such that slices recorded from older mice without a
wheel showed attenuated amplitude. (Biello 2009)
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rhythms in Figs. 3 and 4. On Day 3, only one out of 16
aged mice with wheels displayed activity onset within
2 h of the expected value (based on the preshift time of
onset), compared to ten of 16 young mice. On Day 5,
zero of six aged mice had accomplished this, com-
pared to five of six young mice. By Day 9, six out of
six mice in each group had shifted to within 1 h of the
expected value. Aged mice housed with a running
wheel typically displayed greater circadian rhythmic-
ity in motion sensor actograms during re-entrainment
(see a representative example in Fig. 5a) than did aged
mice housed without a running wheel (Fig. 5b). As
shown in Fig. 6, the pattern of wheel use was altered
on Days 1–3 following the shift, especially in the aged
mice. By Day 5 postshift, young mice display activity
patterns consistent with baseline wheel use, whereas
aged mice continued to show altered patterns of wheel
use and lower levels of wheel use early in the dark
phase compared to baseline patterns.
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Fig. 2 Analysis of activity under control conditions: a median
normalized motion under LD12:12. Gray band indicates the
standard error of the median. b Proportion of energy in discrete
wavelet transform (DWT) scales of motion, which can be inter-
preted as proportion of variance accounted for by each period
range. All three groups are signficantly different in proportion of
energy in level k=1 and in circadian level k=5 (p<0.001) but

not significantly different for levels k=2, 3, and 4 (multiple
comparison test). c Median wheel revolutions per 30-min bin.
d Energy in DWT scales for wheel-running activity. Young mice
had greater magnitude of overall activity and much greater
energy in the circadian scale k=5. In b and d, error bars show
mean±SEM. NW signifies animals housed without access to a
running wheel

Fig. 3 Young and aged mice housed with running wheels
showed different rates of re-entrainment of wheel-running ac-
tivity rhythms to the shifted LD cycle. Circular means with 95 %
confidence intervals for the circular mean
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We examined mPER2::LUC bioluminescence
rhythms of four tissues (SCN, esophagus, spleen, and
thymus) of young and aged mice taken on Days 2, 4,
and 9 following the 8 h advance of the LD cycle. For
agedmice without a wheel, samples were taken on Days
4 and 9 (not Day 2). As detailed below, our analysis
shows that in response to the 8 h advance, rhythmicity

was reduced and the number of days needed to achieve
the shift was increased in aged mice, with a greater
effect for aged mice without a wheel.

The amplitude of PER2::LUC oscillations in SCN
explants did not differ significantly between young
and aged mice, with or without wheels, prior to the
shift, and it decreased in response to the LD shift, with

Fig. 4 Example actograms showing both less wheel use in aged
mice (b and d) as well as slowed response to the shifted light:
dark cycle. Animals shown in a and b were euthanized on Day 4

postshift, and actograms c and d were from mice euthanized on
Day 9. Vertical line indicates time of lights off in the 12:12 LD
cycle. Horizontal lines indicate missing data

Fig. 5 Motion sensor actograms in aged mice a with and b
without access to a running wheel. Vertical lines show time of
dark onset in the LD 12:12 cycle. Motion sensors were

positioned to pick up activity in the area of the cage under the
water bottle and to only minimally pick up activity in the
running wheel
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longer-lasting effects in aged mice. In young mice, SCN
amplitude was significantly lower only on Day 2, while
in aged mice, it was lower on both Days 2 and 4
compared to preshift control and Day 9 conditions (p<
0.001, multiple comparison test). For aged mice without
wheels, SCN amplitude on Day 4 was also significantly
lower than the preshift control (p=0.001). See Fig. 7. To
assess the regularity of oscillations, we used the RI; see
Fig. 8 for an explanation of RI. Mean RI of SCN
explants for young and aged mice did not differ signif-
icantly before or on Day 2 of the 8 h advance (p=0.1,
multiple comparison test). On Day 4, SCN RI of young
mice were not significantly different from controls, but
that of aged mice was significantly lower, indicating
disrupted or weakened rhythms in the SCN (p<0.001,
F=14, multiple comparison test). OnDay 9, the SCN RI
of all three groups were significantly different from each
other (p<0.001, F=22, multiple comparison test), with
SCN RI of aged mice still significantly below that of
young mice, and the SCN RI for aged mice without
wheels was significantly less than that for aged mice
with wheels (see Fig. 9a).

The SCN of young mice re-entrained in fewer days
than those of aged mice (see Fig. 10). On Day 2, both
young and old mice exhibited disrupted SCN phases.

On Day 4, the SCN of the majority of young mice had
nearly completed the 8 h advance (eight of ten were
within 2 h of the expected value, based on control
peak times), but the aged mice continued to exhibit
disrupted phases. By Day 9, the SCN of mice in all
three groups had completed the 8 h advance (mean did

Fig. 6 Comparison of aged
and young mice in wheel use
patterns. Mean wheel revolu-
tions were summarized in 30-
min bins. Mice from Day 9
groups in aged (n=4) and
young (n=6) mice
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Fig. 7 Amplitude of PER2::LUC oscillations in SCN explants.
Bioluminescence time series were first detrended and then am-
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in vitro. Error bars show mean±SEM
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Fig. 8 Explanation of rhythmicity index (RI). a Three biolumi-
nescence recordings of SCN explants from young mice dissect-
ed on Day 2, with noise and trend removed for clarity of
comparison. The time series (4,189) with RI=0.73 exhibits
more regular waveforms and peak-to-peak intervals (SD 0.6 h)
than the time series (4,118) with RI=0.26 (SD 3.6 h). The time
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correlation gives the correlation of a time series with lagged
version of itself, so that a periodic time series will have a peak in
its autocorrelation when the lag equals the period. This peak
value is the RI for these bioluminescence time series. A perfect-
ly periodic time series has RI=1, while RI below 2/sqrt(N),
where N is the number of time points, indicates an arrhythmic
time series
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not differ significantly from expected value). Another
measure of internal temporal order is to examine the
relative phase of the last activity onset and the time of
peak of the SCN ex vivo. When we examined these
phase relationships, we found that control unshifted
mice and mice on Day 9 postshift showed similar

phase relationships between SCN and locomotor ac-
tivities (see Fig. 11 and Supplementary 1). Mice
euthanized 2 days after the LD shift showed disruption
of this internal phase synchrony. In young mice, inter-
nal synchrony between locomotor activity and SCN
mPER2::LUC rhythms was largely restored by Day 4
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Fig. 9 Rhythmicity of SCN explants and desynchrony in tissue
explant phases in response to 8 h advance of LD cycle. a The
regularity of rhythms exhibited by SCN explants, measured by
rhythmicity index (RI), does not differ significantly in mean
between young, aged, and aged NW mice for LD12:12 control
condition (p=0.14) or on Day 2 between young and aged mice
(p=0.87). NW animals housed without access to a running
wheel. On Day 4, young mice had a mean RI that did not differ
significantly from the control value, while for aged and aged
NW mice, the mean RI was significantly different from that for
young Day 4 and all of the controls (p<0.001, F=12, multiple
comparison test). All three groups differed significantly on Day
9 (p<0.001, F=22, multiple comparison test). b Desynchrony of
phases of the SCN, spleen, esophagus, and thymus is measured

by taking the circular standard deviation of the tissue phases
relative to the average phase relations under control conditions.
Variability among individuals leads to some deviation from
average for the control group. The desynchrony is significantly
greater for both young and aged mice with wheels on Day 2 than
for the control group, while on Day 4, desynchrony is not
significantly different from control values for young mice but
remains signficantly different for aged mice (p<0.001, F=6.9,
multiple comparison test comparing control, Day 2, and Day 4
conditions). On Day 9, desynchrony of aged mice without
wheels remains significantly higher in mean than that of young
mice (p=0.01, one-sided t test), but desynchrony of aged mice
with wheels is not significantly different from that of young
mice. *p<0.01. Error bars show mean±SEM
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lights off). Time 0 is the beginning of the secondday in vitro. Gray
bars on Day 9 indicate expected phase based on mean±SD of
controls. NW animals housed without access to a running wheel
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postshift, whereas aged mice continued to demonstrate
disrupted internal synchrony on Day 4.

Peripheral tissues in aged mice tended to require
more days to complete the shift in response to the 8 h

advance, with only a modest shift by Day 4, while in
young mice, most of the shift was accomplished by
Day 4 (see Table 1). Young mice shifted significantly
more than aged mice on Day 4 for all three peripheral

0 3 6 9 12 15 18 21
−6
−3

0
3
6
9

12
15
18

Activity onset (h)

S
C

N
 p

ea
k 

tim
e 

(h
)

Young Control, n=10
Young Day 9, n=3

0 3 6 9 12 15 18 21
−6
−3

0
3
6
9

12
15
18

Activity onset (h)

S
C

N
 p

ea
k 

tim
e 

(h
)

Young Day 2, n=11
Young Day 4, n=7

0 3 6 9 12 15 18 21
−6
−3

0
3
6
9

12
15
18

Activity onset (h)

S
C

N
 p

ea
k 

tim
e 

(h
)

Aged Control, n=16
Aged Day 9, n=6

0 3 6 9 12 15 18 21
−6
−3

0
3
6
9

12
15
18

Activity onset (h)

S
C

N
 p

ea
k 

tim
e 

(h
)

Aged Day 2, n=12
Aged Day 4, n=10

a b

c d

Fig. 11 The time of the peak of the PER2::LUC rhythm of the
SCN in vitro was predictably related to the time of last wheel-
running activity onset in control unshifted animals (black tri-
angles) as well as animals 9 days after the LD shift (gray circles)
in both young (a) and aged (c) mice. Mice euthanized
2 days after the LD shift (black diamonds) showed disrup-
tion of this internal phase synchrony. In young mice,

internal synchrony between locomotor activity and SCN
Per2::Luc rhythms was largely restored by Day 4 postshift
(gray inverted triangles, b) whereas aged mice continued to
demonstrate disrupted internal synchrony on Day 4 (gray
inverted triangles, d). In all graphs, lines have slope 1 and
pass through the centroid of the control data points (black
triangles) for the respective age group

Table 1 Shifting of peripheral
tissues in response to 8 h advance
of LD cycle. Peak time of PER2::
LUC for peripheral tissues is giv-
en as hours relative to ZT of the
original LD cycle. Positive shift
indicates advancing of phase;
negative shift indicates delaying
of phase. Peak time and shifts are
stated as circular mean±circular
standard deviation in hours. NW
groups without access to a run-
ning wheel

Tissue Group Control peak time Shift on Day 2 Shift on Day 4 Shift on Day 9

Thymus Young 19.5±1.1 h 2.5±1.3 h 6.3±2.2 h 7.9±0.9 h

Aged 18.6±1.3 h 0.6±1.4 h 2.1±1.8 h 8.6±2.7 h

Aged NW 18.2±1.0 h 1.0±1.6 h 7.0±2.6 h

Spleen Young 18.6±1.1 h 0.6±1.0 h 7.3±1.7 h 9.0±0.9 h

Aged 18.5±1.4 h −0.1±1.2 h 1.5±2.5 h 8.4±1.1 h

Aged NW 19.5±0.7 h 2.0±2.6 h 10.3±1.7 h

Esophagus Young 18.7±0.5 h 2.4±0.9 h 6.6±1.4 h 9.3±0.5 h

Aged 17.7±1.4 h 0.6±2.6 h 2.9±2.3 h 8.0±2.5 h

Aged NW 17.5±1.2 h 0.8±1.4 h 7.7±1.1 h
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tissues. The shift of the esophagus in aged mice with a
wheel was significantly more than that of aged mice
without a wheel by Day 4 (p=0.02, t test), while the
shift of the thymus was only marginally greater (p=
0.07, t test). The shift of the spleen showed no signif-
icant difference on Day 4 between aged mice with and
without a wheel (p=0.65, t test).

Internal desynchrony of the phases of the four tissues
also lasted longer for aged mice without a wheel, as
shown in Fig. 9b. On Day 2, both young and aged mice
exhibited significantly increased internal desynchrony
as measured by circular standard deviation of the tissue
phases from the average relative phases under control
conditions, while on Day 4, desynchrony among the
tissues of aged mice with and without wheels remained
high but that of young mice was not significantly differ-
ent from controls (p<0.001, F=6.9, multiple compari-
son test comparing control, Day 2, and Day 4
conditions). On Day 9, aged mice without a wheel
exhibited internal desynchrony among tissues greater
than that of young mice (p=0.02, t test), while that of
aged mice with wheels did not differ significantly from
the other two groups. We observed no significant differ-
ence in amplitude of the PER2::LUC oscillations in
peripheral tissues across the conditions.

We compared results from aged mice when euthan-
ized early in the light period versus late in the light
period. All mice in this sample were housed with
wheels. Unlike similar experiments with younger mice
(Davidson et al. 2009), we found several differences
due to time of dissection. For the SCN, morning
dissection time resulted in peak times, on average,
1.3 h earlier (means significantly different, p=0.007),
but no significant difference in RI (p=0.70). For
esophagus samples, morning dissection time resulted
in later peak times (p=0.045) but no significant dif-
ference in RI (p=0.84). For spleen, there was no
difference in the mean peak times (p=0.47), but peak
times appeared more variable with evening dissection
time, and the two samples differed in mean RI (p<
0.001). For thymus, there was no effect of dissection
time (p=0.75), but the mean of RI was significantly
different (p=0.036). For spleen and thymus, rhythms
were better (as quantified by the RI) if dissected in the
afternoon.

In our second bioluminescence experiment, we
aimed to replicate findings from the first experiment
indicating differences in aged mice housed with or
without a wheel. The mice in this second experiment

were significantly older than the mice in the first
experiment (p<0.001). We replicated the results
shown in Fig. 2, finding that the strength of circadian
rhythmicity differed across the groups, as measured by
energy separated into frequency bands by a DWT. The
proportion of the energy in the circadian component
(scale 5) from our replication was nearly identical to
that found in the first experiment (see Fig. 2b) with the
aged mice with wheels showing 0.23±0.02 and the
aged mice without a wheel averaging 0.15±0.03, with
means significantly different (p=0.03). As in the first
experiment, aged mice with or without wheels
exhibited reduced RI of the SCN on Day 4 following
the LD shift that was not significantly different be-
tween the two groups (p=0.46). The phase shift of the
SCN and peripheral tissues was also not significantly
different between these two groups, and none of the
peripheral tissues shifted in phase by an appreciable
amount, although we noted that the aged mice without
wheel access showed greater variability in phase when
compared to the mice with wheel access (e.g., circular
standard deviations for the phase shifts of the four
tissues for the no wheel mice were 3.0–3.4 h, while
those for tissues of the with-wheel mice range from
1.1 to 1.9 h). This result differs from the data from the
first experiment shown in Table 1. The aged mice in
the second experiment used their running wheels less
than those in the first experiment (19±11 versus 26±
15 revolutions, mean±SD, t test p=0.002). They also
differed in the average duration of wheel use during
the subjective night, with the aged mice in the second
experiment showing shorter duration activity period
than the aged mice in the first experiment.

Discussion

Our experiments have demonstrated that male mice
show several changes in their circadian system as they
age. We replicated previous reports that aging is asso-
ciated with reduced use of the running wheel, frag-
mentation of activity under a stable LD cycle, and
slowed phase resetting following a shift in the LD
cycle. We demonstrate here that, following a shift of
the LD cycle, both young and aged mice exhibit
reduced strength of mPER2::LUC rhythms of the
SCN in vitro. This impact of the LD shift on the ability
of the SCN to sustain a robust rhythm persists for
more days following the shift in aged mice. Both
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behavioral and molecular measures from SCN and
target tissues were slower to resynchronize their phase
to a shifted LD cycle in aged animals. Access to a
running wheel was able to alleviate most of these age-
related changes in the circadian system dynamics.
Aged mice housed with a running wheel showed
stronger circadian rhythms in locomotor activity,
faster recovery of internal synchrony following a LD
shift, and increased amplitude of the firing rate rhythm
when compared to aged mice housed without a run-
ning wheel. The impact of voluntary exercise on cir-
cadian rhythm output in an aged animal is a novel
finding and has implications for the health of older
people living with environmentally induced circadian
disruption.

Age-associated reduction in the strength of circadi-
an rhythms was observed in our data through several
measures. The DWT (Leise and Harrington 2011)
decomposes the energy in locomotor activity record-
ings into distinct frequency bands, revealing an effect
of age that was partially alleviated by the presence of
the wheel (see Fig. 2). In particular, aged mice
exhibited reduced circadian rhythmicity and increased
fragmentation of activity that was worsened by lack of
a wheel. Application of RI to motion records also
indicated weaker circadian rhythms of activity in aged
mice, especially those without a wheel. We further
used the RI to assess regularity of circadian oscilla-
tions in bioluminescent recordings, demonstrating an
impact of a shifted LD cycle on the quality of the
circadian rhythm expressed by the SCN in vitro.
Normal rhythmicity of the SCN mPER2::LUC oscil-
lation was restored more rapidly in young mice than in
aged mice. Young mice also synchronized behavioral
activity and peripheral tissue mPER2::LUC rhythms
more rapidly, with the difference between young and
aged on Day 9 following the LD shift widened by lack
of a wheel. Our data fits well with previous experi-
ments, indicating that induced activity continues to
influence the functioning of the circadian system in
both rodents and humans well into old age
(Mrosovsky and Biello 1994; Baehr et al. 2003).

Loss of a strong rhythmic signal from the SCN
would be expected to disrupt circadian system syn-
chrony and the ability to reset to a shifted LD cycle.
Resetting is accompanied by a period of reduced syn-
chrony among neurons in the SCN in young animals
(Davidson et al. 2009; Nagano et al. 2003; Nakamura
et al. 2005) and from our results, we hypothesize that

this time period is longer in aged animals. Whereas
mPER2::LUC rhythms were not different in unshifted
mice of different ages in our sample, a result similar to
previously published studies (Nakamura et al. 2011),
the shift of the LD cycle revealed a weakness in the
dynamics of the circadian system in aged animals. We
demonstrate that this weakness leads to an extended
period of internal desynchrony in the aged mice, in
which the SCN and target tissues took longer to adapt
to the new phase of the LD cycle. Sellix et al. (2012)
found that some peripheral tissues respond more slow-
ly to an LD shift in older mice, which they attribute to
an age-related decrease in pacemaker output ampli-
tude, such as would occur with reduced amplitude
electrophysiological rhythms.

The decreased rhythmic output signal is evidenced
by the lower amplitude of the circadian rhythm in
firing rate from aged mice observed in our study.
This lower amplitude has been reported by other re-
cording in vivo (Nakamura et al. 2011), in vitro (Biello
2009; Farajnia et al. 2012; Satinoff et al. 1993;
Watanabe et al. 1995), and in cultured SCN (Aujard
et al. 2001). The observed decrease could be caused by
changes in the properties of single cells or by desyn-
chrony in populations of cells. Studies show changes
in the neuronal neurotransmitter chemistry of the ag-
ing SCN, with decreases in neurotransmitters such as
vasoactive intestinal peptide, gastrin-releasing peptide,
neurotensin, and vasopressin (Duncan et al. 2010;
Swaab et al. 1985). Patch recordings show changes
in the membrane properties of SCN neurons that could
lead to changes in neuronal communication (Farajnia
et al. 2012).

Perhaps the most significant changes occur with the
major inhibitory neurotransmitters of the SCN, Gamma-
aminobutyric acid (GABA), which is thought to be
important for the network of cellular communication
within the SCN in both young and aged mice (Albus
et al. 2005; Biello 2007). In addition, endogenous
GABA is thought to play a role specifically in main-
taining the amplitude of the SCN (Aton et al. 2006).
There are changes to the GABAergic system with age
including an age-related decrease of GABAergic termi-
nal area in the mouse SCN. Alterations are seen both in
the presynaptic network of GABA terminals (Palomba
et al. 2008) and GABAergic current amplitude (Farajnia
et al. 2012) in aged animals. These changes in the
GABAergic system within the SCN have consequences
observable as changes to functional response to the
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GABA signal with age (Biello 2009). These alterations
to the system could contribute to variations in neuronal
communication within the SCN with age. Alterations to
the neurotransmitters underlying these effects may be-
come particularly important in potential applications of
this work. Not all older individuals may be in a position
to take advantage of exercise as a route to improve
synchrony, and a more complete understanding of the
system physiology may aid in the development of phar-
macological tools.

These changes in SCN communication suggest
that, in addition to decreased output signals from the
SCN, deterioration of other aspects of the circadian
system may occur with aging. The SCN of the older
mice (22–28 months) used in Sellix et al. (2012)
shifted more rapidly than those of young mice or the
aged mice (18–20 months) used in our study and also
experienced greater phase desynchrony among SCN
neurons than young mice following the LD shift.
These differences could potentially be due to deficits
in communication among SCN neurons worsening
with age, so that in very old mice, the SCN has a
greatly weakened network in which the phases of
neurons are easily shifted. For instance, the modeling
and experimental work of Abraham et al. (2010) sug-
gests that SCN networks with reduced coupling re-
spond more readily to entrainment signals.
Degradation of input signals to the SCN is also likely
to occur with aging. Aweakened photic input signal in
aged animals is one potential cause of the slowed
response to shifts of the LD cycle in aged animals that
we observed. Older animals like those studied in Sellix
et al. (2012) may additionally experience significantly
reduced coupling among SCN neurons, which could
then respond with large phase changes even to a
reduced input signal. Deficits in the output signals
from the SCN associated with aging would result in
a slowed response of peripheral tissues and activity to
a shift of the LD cycle.

We found that a running wheel can boost the firing
rate in the SCN; however, the mechanism by which
the wheel or exercise might improve circadian organi-
zation is not clear. We see several possibilities from
the current literature. Intracranial implants of fetal
SCN tissue have been shown to improve circadian
rhythms in older rats with poor circadian rhythms (Li
and Satinoff 1998), suggesting that downstream tar-
gets are capable of responding to a stronger circadian
clock signal in aged animals. Transitions between

vigilance states have been shown to be mirrored by
alterations in SCN firing rate (Deboer et al. 2003).
Wheel running in mice has been shown to increase
firing of neurons within the SCN, which would have
an impact on amplitude (Schaap and Meijer 2001;
Yamazaki et al. 1998). Additionally, wheel running
has also been shown to improve the consolidation of
the circadian activity patterns in mice with impaired
SCN function (Power et al. 2010). Therefore, it is
possible that the running wheel was able to improve
circadian activity rhythms via increasing the amplitude
of firing of SCN cells.

Whereas a prior study reported that older mice
showed increased locomotor activity in the late por-
tion of the dark phase, a result compared to the clinical
instance of “sundowning” in Alzheimer's patients,
where agitation and dementia symptoms are worse in
the late afternoon (Bedrosian et al. 2011), we failed to
replicate this effect, as did a study using CD1/129
mice between 4 and 15 months of age (Duncan et al.
2012). These and our studies differ in the strain and
age of the mice, with the study showing “sundowning”
comparing C57BL/6 mice of 7 and 29 months and
housing them under an LD of 14:10 (Bedrosian et al.
2011).

There are several limitations to our approach for
measuring circadian parameters from tissues ex vivo.
One concern is that the dissection might reset the
phase of the rhythms. This has been observed in some
studies (Gillette 1986; Yoshikawa et al. 2005) but has
not been observed in all studies (Davidson et al. 2009;
vanderLeest et al. 2009; Yannielli and Harrington
2000). In our lab, we have demonstrated for male
and female young adult mPer2Luc mice housed in
12:12 LD cycles that dissection between ZT 2 and
10 does not reset phase for SCN, spleen, esophagus,
thymus, and lung (Davidson et al. 2009). Here, we
demonstrate no sizable difference in phase between
aged male mPer2Luc mice housed in 12:12 LD cycles
for SCN, thymus, and spleen when dissected either
between ZT 2and 3 or ZT 10 and 11, but for some
tissues, we did find statistically significant differences
in phase depending on time of dissection in the aged
mice. When choosing the dissection phase for mice in
the groups experiencing a shift of the LD cycle, we
timed this to occur within an hour of ZT 2–10 in both
the original and the shifted cycle. We do not know if
the mice in a state of circadian desynchrony following
a shift of the LD cycle respond to dissection in the
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same way as do the mice in the control unshifted
conditions. To continue this work, one possibility
would be to use in vivo imaging of rhythms from
SCN and peripheral tissues, as in Tahara et al. (2012).

A reduction in circadian rhythm consolidation and
internal desynchrony has been linked with disrupted
sleep and negative health consequences, with multiple
impacts on age-related pathologies (Kondratova and
Kondratova 2012). Diverse lines of research link cir-
cadian disruption and cancer incidence and progres-
sion (Greene 2012) and cardiovascular disease
(Martino and Sole 2009). Metabolism is intricately
regulated by the circadian clock and internal temporal
disorder contributes to obesity and metabolic disorders
(Albrecht 2012). Aged mice subjected to 8 weeks of
weekly 6 h advances of the LD cycle showed signifi-
cantly increased mortality; the control group showed
83 % survival, while the disrupted group had only
47% survival andwhen advances occurred every 4 days,
the mortality increased (Davidson et al. 2006). Further
research that allows us to better address circadian dis-
ruption will have wide implications for health and life-
span of aging populations. Our research opens new
research vistas in that our studies suggest that increased
voluntary exercise can have beneficial effects on circa-
dian disruption in aged mice. Further research is neces-
sary to better establish and to detail mechanisms for
these effects of exercise on circadian health in aging.
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