1,888 research outputs found

    Study of CAPE effect on apoptosis induction in AGS human gastric cancer cell line

    Get PDF
    Background: Propolis is a natural product of bee and caffeic acid phenethyl ester (CAPE) is a pharmacologically important product of propolis. Objectives: The aim of this study was to investigate the effect of CAPE on apoptosis induction in AGS human gastric cancer cells. Materials and Methods: The cytotoxic effects of CAPE at different concentrations were investigated on AGS cells viability after 24 hours treatment by MTT assay. To measure the effect of CAPE on apoptosis induction, AGS cells were treated with CAPE for 24 hours and investigated by FITC Annexin V/PI staining using flow cytometry. Results: CAPE prevented growth and proliferation of AGS human gastric cancer cell line in a concentration-dependent manner with an IC50 of approximately 60 Ī¼M by a 24-hour treatment. Also CAPE caused increased induction of apoptosis in AGS cells from 1.37 % in control cells to 21.76 % in treated cells with 30 Ī¼M CAPE. Conclusions: CAPE prevents growth and proliferation of AGS human gastric cancer cell line through inducing programmed cell death in AGS cells. Therefore, CAPE could be helpful for developing chemotherapeutic agents or as an adjuvant for human gastric cancer treatment. Ā© 2016, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences

    A road to reality with topological superconductors

    Get PDF
    Topological states of matter are a source of low-energy quasiparticles, bound to a defect or propagating along the surface. In a superconductor these are Majorana fermions, described by a real rather than a complex wave function. The absence of complex phase factors promises protection against decoherence in quantum computations based on topological superconductivity. This is a tutorial style introduction written for a Nature Physics focus issue on topological matter.Comment: pre-copy-editing, author-produced version of the published paper: 4 pages, 2 figure

    Effects of structural ordering on infrared active vibrations within Biā‚‚(Teā‚ā‚ā€”ā‚“ā‚ŽSeā‚“)ā‚ƒ

    Get PDF
    We performed a materials investigation into the properties of the THz conductivity spectra in the ternary alloy Biā‚‚(Teā‚ā‚ā€”ā‚“ā‚ŽSeā‚“)ā‚ƒ as a function of selenium fraction, x, and temperature. We find that the reduction in crystalline anharmonicity caused by the preferential ordering of the ā‚“=1/3 phase of Biā‚‚(Teā‚ā‚ā€”ā‚“ā‚ŽSeā‚“)ā‚ƒ results in the prominent E1uphonon (occurring between 1.5 and 1.9 THz) red-shifting on cooling less than the binary Bi2Te3and Bi2Se3samples. We also find that the E1uphonon couples to an electronic continuum at low temperatures (Tā©½40K), regardless of Biā‚‚(Teā‚ā‚ā€”ā‚“ā‚ŽSeā‚“)ā‚ƒstoichiometry or the Hall mobility of the topological insulator crystal. These results highlight the role that these optical modes play in the electronic and thermal transport within this ternary alloy and pave the way for exploring the interesting phonon dynamics within these topological insulator and thermoelectric materials

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs GĪ±i. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through GĪ±i, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Understanding the limits to generalizability of experimental evolutionary models.

    Get PDF
    Post print version of article deposited in accordance with SHERPA RoMEO guidelines. The final definitive version is available online at: http://www.nature.com/nature/journal/v455/n7210/abs/nature07152.htmlGiven the difficulty of testing evolutionary and ecological theory in situ, in vitro model systems are attractive alternatives; however, can we appraise whether an experimental result is particular to the in vitro model, and, if so, characterize the systems likely to behave differently and understand why? Here we examine these issues using the relationship between phenotypic diversity and resource input in the T7-Escherichia coli co-evolving system as a case history. We establish a mathematical model of this interaction, framed as one instance of a super-class of host-parasite co-evolutionary models, and show that it captures experimental results. By tuning this model, we then ask how diversity as a function of resource input could behave for alternative co-evolving partners (for example, E. coli with lambda bacteriophages). In contrast to populations lacking bacteriophages, variation in diversity with differences in resources is always found for co-evolving populations, supporting the geographic mosaic theory of co-evolution. The form of this variation is not, however, universal. Details of infectivity are pivotal: in T7-E. coli with a modified gene-for-gene interaction, diversity is low at high resource input, whereas, for matching-allele interactions, maximal diversity is found at high resource input. A combination of in vitro systems and appropriately configured mathematical models is an effective means to isolate results particular to the in vitro system, to characterize systems likely to behave differently and to understand the biology underpinning those alternatives

    Matrix elements of unstable states

    Get PDF
    Using the language of non-relativistic effective Lagrangians, we formulate a systematic framework for the calculation of resonance matrix elements in lattice QCD. The generalization of the L\"uscher-Lellouch formula for these matrix elements is derived. We further discuss in detail the procedure of the analytic continuation of the resonance matrix elements into the complex energy plane and investigate the infinite-volume limit

    Genetic and epigenetic characteristics of human multiple hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple carcinogenesis is one of the major characteristics of human hepatocellular carcinoma (HCC). The history of multiple tumors, that is, whether they derive from a common precancerous or cancerous ancestor or individually from hepatocytes, is a major clinical issue. Multiple HCC is clinically classified as either intratumor metastasis (IM) or multicentric carcinogenesis (MC). Molecular markers that differentiate IM and MC are of interest to clinical practitioners because the clinical diagnoses of IM and MC often lead to different therapies.</p> <p>Methods</p> <p>We analyzed 30 multiple tumors from 15 patients for somatic mutations of cancer-related genes, chromosomal aberrations, and promoter methylation of tumor suppressor genes using techniques such as high-resolution melting, array-comparative genomic hybridization (CGH), and quantitative methylation-specific PCR.</p> <p>Results</p> <p>Somatic mutations were found in <it>TP53 </it>and <it>CTNNB1 </it>but not in <it>CDKN2A </it>or <it>KRAS</it>. Tumors from the same patient did not share the same mutations. Array-CGH analysis revealed variations in the number of chromosomal aberrations, and the detection of common aberrations in tumors from the same patient was found to depend on the total number of chromosomal aberrations. A promoter methylation analysis of genes revealed dense methylation in HCC but not in the adjacent non-tumor tissue. The correlation coefficients (<it>r</it>) of methylation patterns between tumors from the same patient were more similar than those between tumors from different patients. In total, 47% of tumor samples from the same patients had an <it>r </it>ā‰„ 0.8, whereas, in contrast, only 18% of tumor samples from different patients had an <it>r </it>ā‰„ 0.8 (p = 0.01). All IM cases were highly similar; that is, <it>r </it>ā‰„ 0.8 (<it>p </it>= 0.025).</p> <p>Conclusions</p> <p>The overall scarcity of common somatic mutations and chromosomal aberrations suggests that biological IM is likely to be rare. Tumors from the same patient had a methylation pattern that was more similar than those from different patients. As all clinical IM cases exhibited high similarity, the methylation pattern may be applicable to support the clinical diagnosis of IM and MC.</p
    • ā€¦
    corecore