39 research outputs found

    Variability of dimethyl sulphide (DMS), methanethiol and other trace gases in relation with microbial communities from the temperate Atlantic to the Arctic Ocean

    Get PDF
    Dimethyl sulphide (DMS) plays an important role in the atmosphere by influencing the formation of aerosols and cloud condensation nuclei. In contrast, the role of methanethiol (MeSH) for the budget and flux of reduced sulphur remains poorly understood. In the present study, we quantified DMS and MeSH together with the trace gases carbon monoxide (CO), isoprene, acetone, acetaldehyde and acetonitrile in North Atlantic and Arctic Ocean surface waters, covering a transect from 57.2° N to 80.9° N in high spatial resolution. Whereas isoprene, acetone, acetaldehyde and acetonitrile concentrations decreased northwards, CO, DMS and MeSH retained significant levels at high latitudes, indicating specific sources in polar waters. DMS was the only compound with higher average in polar (31.2 ± 9.3 nM) than in Atlantic waters (13.5 ± 2 nM), presumably due to DMS originating from sea ice. At eight sea-ice stations north of 80° N, in the diatom-dominated marginal ice zone, vertical profiles showed a marked correlation (R2 = 0.93) between DMS and chlorophyll a. Contrary to previous measurements, MeSH and DMS did not co-vary, indicating decoupled processes of production and conversion. The contribution of MeSH to the sulphur budget (represented by DMS+MeSH) was on average 20 % (and up to 50 %) higher than previously observed in the Atlantic and Pacific Oceans, suggesting MeSH as a significant source of sulphur possibly emitted to the atmosphere. The potential importance of MeSH was underlined by several correlations with bacterial taxa, including typical phytoplankton associates from the Rhodobacteraceae and Flavobacteriaceae families. Furthermore, the correlation of isoprene and chlorophyll a with Alcanivorax indicated a specific relationship with isoprene-producing phytoplankton. Overall, the demonstrated latitudinal and vertical patterns contribute to the understanding of central marine trace gases from chemical, atmospheric and biological perspectives

    Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest

    Get PDF
    The CANOPEE project aims to better understand the biosphere–atmosphere exchanges of biogenic volatile organic compounds (BVOCs) in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the field site of the Oak Observatory of the Observatoire de Haute Provence (O3HP) located in the southeast of France. The site is a forest ecosystem dominated by downy oak, Quercus pubescens Willd., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK) and methacrolein (MACR) and several other oxygenated VOC (OxVOC) were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS), and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2–16 ppbv inside and 2–5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2.0 and 9.7 mg m−2 h1. Net isoprene normalized flux (at 30 °C, 1000 μmol quanta m−2 s−1) was estimated at 7.4 mg m−2 h−1. Evidence of direct emission of methanol was also found exhibiting maximum daytime fluxes ranging between 0.2 and 0.6 mg m−2 h−1, whereas flux values for monoterpenes and others OxVOC such as acetone and acetaldehyde were below the detection limit. The MVK+MACR-to-isoprene ratio provided useful information on the oxidation of isoprene, and is in agreement with recent findings proposing weak production yields of MVK and MACR, in remote forest regions where the NOx concentrations are low. In-canopy chemical oxidation of isoprene was found to be weak and did not seem to have a significant impact on isoprene concentrations and fluxes above the canopy

    Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS

    Get PDF
    In September 2017, we conducted a proton-transfer-reaction mass-spectrometry (PTR-MS) intercomparison campaign at the CESAR observatory, a rural site in the central Netherlands near the village of Cabauw. Nine research groups deployed a total of 11 instruments covering a wide range of instrument types and performance. We applied a new calibration method based on fast injection of a gas standard through a sample loop. This approach allows calibrations on timescales of seconds, and within a few minutes an automated sequence can be run allowing one to retrieve diagnostic parameters that indicate the performance status. We developed a method to retrieve the mass-dependent transmission from the fast calibrations, which is an essential characteristic of PTR-MS instruments, limiting the potential to calculate concentrations based on counting statistics and simple reaction kinetics in the reactor/drift tube. Our measurements show that PTR-MS instruments follow the simple reaction kinetics if operated in the standard range for pressures and temperature of the reaction chamber (i.e. 1-4 mbar, 30-120 degrees, respectively), as well as a reduced field strength E/N in the range of 100-160 Td. If artefacts can be ruled out, it becomes possible to quantify the signals of uncalibrated organics with accuracies better than +/- 30 %. The simple reaction kinetics approach produces less accurate results at E/N levels below 100 Td, because significant fractions of primary ions form water hydronium clusters. Deprotonation through reactive collisions of protonated organics with water molecules needs to be considered when the collision energy is a substantial fraction of the exoergicity of the proton transfer reaction and/or if protonated organics undergo many collisions with water molecules.Peer reviewe

    Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR

    Get PDF
    Hydroxyl (OH) radical reactivity (kOH) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection  < 1 s−1 at a time resolution of 30 s to a few minutes) is higher for instruments directly detecting hydroxyl radicals, whereas the indirect comparative reactivity method (CRM) has a higher limit of detection of 2 s−1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapour or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds (mixing ratio of OH reactants were up to 10 ppbv). In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied to account for known effects of, for example, deviations from pseudo first-order conditions, nitrogen oxides or water vapour on the measurement. Methods used to derive these corrections vary among the different CRM instruments. Measurements taken with a flow-tube instrument combined with the direct detection of OH by chemical ionisation mass spectrometry (CIMS) show limitations in cases of high reactivity and high NO concentrations but were accurate for low reactivity (< 15 s−1) and low NO (< 5 ppbv) conditions

    ACTRIS ACSM intercomparison - Part 2 : Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    Get PDF
    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December similar to 2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f(44)), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f(44) in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 +/- 2.2 %, COA: 15.0 +/- 3.4 %, OOA: 41.5 +/- 5.7 %, BBOA: 29.3 +/- 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.Peer reviewe

    ACTRIS ACSM intercomparison - Part 1 : Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments

    Get PDF
    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for 3 weeks during the late-fall-early-winter period (November-December 2013). The first week was dedicated to the tuning and calibration of each instrument, whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical, and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium, and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r(2) > 0.9) were observed systematically for each individual Q-ACSM across all chemical families except for chloride for which three Q-ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025, 1999) and were found to be 9, 15, 19, 28, and 36% for NR-PM1, nitrate, organic matter, sulfate, and ammonium, respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of Q-ACSMs, detailed intercomparison results are presented, along with a discussion of some recommendations about best calibration practices, standardized data processing, and data treatment.Peer reviewe

    A survey of carbon monoxide and non-methane hydrocarbons in the Arctic Ocean during summer 2010: assessment of the role of phytoplankton

    Get PDF
    During the ARK XXV 1+2 expedition in the Arctic Ocean carried out in June–July 2010 aboard the R/V Polarstern, we measured carbon monoxide (CO), non-methane hydrocarbons (NMHC) and phytoplankton pigments at the sea surface and down to a depth 5 of 100m. The CO and NMHC sea-surface concentrations were highly variable; CO, propene and isoprene levels ranged from 0.6 to 17.5 nmol l−1, 1 to 322 pmol l−1 and 1 to 541 pmol l−1, respectively. The CO and alkene concentrations were enhanced in polar waters off of Greenland, which were more stratified because of ice melting and richer in chromophoric dissolved organic matter (CDOM) than typical North Atlantic 10 waters. The spatial distribution of the surface concentrations of CO was consistent with our current understanding of CO-induced UV photo-production in the sea. The vertical distributions of the CO and alkenes followed the trend of light penetration, with the concentrations displaying a relatively regular exponential decrease down to nonmeasurable values below 50 m. However, no diurnal variations of CO or alkene con15 centrations were observed in the stratified and irradiated surface layers. This finding suggests that the production and removal processes of CO and alkenes were tightly coupled. We tentatively determined a first-order rate constant for the microbial consumption of CO of 0.5 d−1, which is in agreement with previous studies. On several occasions, we observed the existence of subsurface CO maxima at the level of the 20 deep chlorophyll maximum. This finding represents field evidence for the existence of a non-photochemical CO production pathway, most likely of phytoplanktonic origin. The corresponding production rates normalized to the chlorophyll content were in the range of those estimated from laboratory experiments. In general, the vertical distributions of isoprene followed that of the phytoplankton biomass. Hence, oceanic data support the 25 existence of biological production of CO and isoprene in the Arctic Ocea

    A survey of carbon monoxide and non-methane hydrocarbons in the Arctic Ocean during summer 2010

    Get PDF
    During the ARK XXV 1 + 2 expedition in the Arctic Ocean carried out in June–July 2010 aboard the R/V <i>Polarstern</i>, we measured carbon monoxide (CO), non-methane hydrocarbons (NMHC) and phytoplankton pigments at the sea surface and down to a depth of 100 m. The CO and NMHC sea-surface concentrations were highly variable; CO, propene and isoprene levels ranged from 0.6 to 17.5 nmol L<sup>−1</sup>, 1 to 322 pmol L<sup>−1</sup> and 1 to 541 pmol L<sup>−1</sup>, respectively. The CO and alkene concentrations as well as their sea–air fluxes were enhanced in polar waters off of Greenland, which were more stratified because of ice melting and richer in chromophoric dissolved organic matter (CDOM) than typical North Atlantic waters. The spatial distribution of the surface concentrations of CO was consistent with our current understanding of CO-induced UV photoproduction in the sea. The vertical distributions of the CO and alkenes were comparable and followed the trend of light penetration, with the concentrations displaying a relatively regular exponential decrease down to non-measurable values below 50 m. However, no diurnal variations of CO or alkene concentrations were observed in the stratified and irradiated surface layers. On several occasions, we observed the existence of subsurface CO maxima at the level of the deep chlorophyll maximum. This finding suggests the existence of a non-photochemical CO production pathway, most likely of phytoplanktonic origin. The corresponding production rates normalized to the chlorophyll content were in the range of those estimated from laboratory experiments. In general, the vertical distributions of isoprene followed that of the phytoplankton biomass. These data support the existence of a dominant photochemical source of CO and light alkenes enhanced in polar waters of the Arctic Ocean, with a minor contribution of a biological source of CO. The biological source of isoprene is observed in the different water masses but significantly increases in the warmer Atlantic waters

    Long-term observation of time-resolved submicron aerosol chemical composition in the region of Paris (France)

    No full text
    In every major European cities, aerosol pollution is of great scientific, economic, health and social concern. Despite geographical disparities, the particulate phase in urban areas is complex by virtue of its chemical composition and the multitude of emission sources. Long-term and detailed chemical speciation studies are key variables to constrain atmospheric processes and local versus continental imports leading to urban pollution episodes; European standards and legislations however mainly focus on indiscriminate mass concentrations (PM2.5 and PM10). While Aerosol Mass Spectrometers (AMS) may provide valuable 'real-time' data for the chemical characterization of submicron particles, their cost and implementation as networking devices make them improper to be used for long-term measurements. Developed by Aerodyne Research Inc. (Billerica, MA), the Aerosol Chemical Speciation Monitor (ACSM) measures quantitative chemical composition for non-refractory sub-micron aerosol particles. Smaller, lower cost and more robust, the ACSM is designed for long-term unattended deployment and routine monitoring applications. In this context, the infrastructure EU-FP7- ACTRIS program has been promoting the use of ACSM for long-term observations at background stations, among which the SIRTA/LSCE site. This station, representative of PM pollution in the region of Paris, has been equipped with an ACSM since June 2011. Co-located multi-wavelength absorption measurements (AE-31, Magee Scientific) allow for Black Carbon source apportionment (Sciare et al. 2011). Reliable PM1 data (TEOM-FDMS 1405F, Thermo) are also available since February 2012. The ACSM has been providing continuous data since June 2011. This large dataset highlight raising important issues on data processing. Nevertheless, the two datasets (ACSM + BC versus PM1) show very good temporal agreement, with a slope close to 1 (slope=1.08, r2=0.87), pointing out the very good consistency and long term stability of ACSM measurements. First results enlighten the major role played by organics and ammonium nitrate on PM loadings in the region of Paris (Fig.1), especially during severe winter pollution episodes. Statistical tools, such as Potential Source Contribution Function, reveal the strong influence of continental import on secondary species (nitrate and sulphate) highest concentrations (Fig.2). Such methodologies applied to Positive Matrix Factorization outputs will also help to better understand the sources and atmospheric processes of organic aerosols. For time-limited intensive campaigns, a substantial analytical fleet is engaged in order to investigate specific pollution sources. Since early February 2012, PILS-IC, PILS-TOC and PILS-MS/MS (for the anionic fraction, water-soluble organic carbon and levoglucosan, respectively) have been implemented to constrain wood burning emissions. Fertilizer spreading emissions will be investigated this spring, emphasizing on gaseous precursors of aerosol
    corecore