104 research outputs found

    Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b

    Get PDF
    The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot Neptune'--reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet's radius and mass, and the latter constrains the planet's temperature and, with measurements at multiple wavelengths, its atmospheric composition. Previous work using transmission spectroscopy failed to detect the 1.4-\mu m water vapour band, leaving the planet's atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH4) deficiency relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Moreover, we report the presence of some H2O and traces of CO2. Because CH4 is expected to be the dominant carbon-bearing species, disequilibrium processes such as vertical mixing and polymerization of methane into substances such as ethylene may be required to explain the hot Neptune's small CH4-to-CO ratio, which is at least 10^5 times smaller than predicted

    Overfitting Affects the Reliability of Radial Velocity Mass Estimates of the V1298 Tau Planets

    Full text link
    Mass, radius, and age measurements of young (<100 Myr) planets have the power to shape our understanding of planet formation. However, young stars tend to be extremely variable in both photometry and radial velocity, which makes constraining these properties challenging. The V1298 Tau system of four ~0.5 Rjup planets transiting a pre-main sequence star presents an important, if stress-inducing, opportunity to directly observe and measure the properties of infant planets. Su\'arez-Mascare\~no et al. (2021) published radial-velocity-derived masses for two of the V1298 Tau planets using a state-of-the-art Gaussian Process regression framework. The planetary densities computed from these masses were surprisingly high, implying extremely rapid contraction after formation in tension with most existing planet formation theories. In an effort to further constrain the masses of the V1298 Tau planets, we obtained 36 RVs using Keck/HIRES, and analyzed them in concert with published RVs and photometry. Through performing a suite of cross validation tests, we found evidence that the preferred model of SM21 suffers from overfitting, defined as the inability to predict unseen data, rendering the masses unreliable. We detail several potential causes of this overfitting, many of which may be important for other RV analyses of other active stars, and recommend that additional time and resources be allocated to understanding and mitigating activity in active young stars such as V1298 Tau.Comment: 26 pages, 12 figures; published in A

    Consequences of the Timing of Menarche on Female Adolescent Sleep Phase Preference

    Get PDF
    Most parents experience their children's puberty as a dramatic change in family life. This is not surprising considering the dynamics of physical and psychosocial maturation which occur during adolescence. A reasonable question, particularly from the parents' perspective, is: when does this vibrant episode end and adulthood finally start? The aim of the present study was to assess the relationship between puberty and the changes in sleep phase preferences during female maturation and adulthood by a cross-sectional survey. The results from 1'187 females aged 5 to 51 years based on self-report measures of sleep preferences on weekdays and on free days as well as the occurrence of menarche, show that in contrast to prepubertal children, adolescent females exhibit a striking progression in delaying their sleep phase preference until 5 years after menarche. Thereafter, the sleep phase preference switches to advancing. The current study provides evidence that a clear shift in sleep-wake cycles temporally linked to menarche heralds the beginning of “adult-like” sleep-wake behaviour in women and can be used as a (chrono)biological marker for the onset of adulthood

    Bright Opportunities for Atmospheric Characterization of Small Planets: Masses and Radii of K2-3 b, c, and d and GJ3470 b from Radial Velocity Measurements and Spitzer Transits

    Full text link
    We report improved masses, radii, and densities for four planets in two bright M-dwarf systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Supplementing K2 photometry with follow-up Spitzer transit observations refined the transit ephemerides of K2-3 b, c, and d by over a factor of 10. We analyze ground-based photometry from the Evryscope and Fairborn Observatory to determine the characteristic stellar activity timescales for our Gaussian Process fit, including the stellar rotation period and activity region decay timescale. The stellar rotation signals for both stars are evident in the radial velocity data and is included in our fit using a Gaussian process trained on the photometry. We find the masses of K2-3 b, K2-3 c, and GJ3470 b to be 6.48{}-0.93+0.99, 2.14{}-1.04+1.08, and 12.58{}-1.28+1.31 M ⊕, respectively. K2-3 d was not significantly detected and has a 3σ upper limit of 2.80 M ⊕. These two systems are training cases for future TESS systems; due to the low planet densities (ρ < 3.7 g cm-3) and bright host stars (K < 9 mag), they are among the best candidates for transmission spectroscopy in order to characterize the atmospheric compositions of small planets

    Histone Deacetylase 3 Depletion in Osteo/Chondroprogenitor Cells Decreases Bone Density and Increases Marrow Fat

    Get PDF
    Histone deacetylase (Hdac)3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO) mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b

    Get PDF
    Close-in giant exoplanets with temperatures greater than 2,000 K (''ultra-hot Jupiters'') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble and Spitzer Space Telescopes. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on JWST. The data span 0.85 to 2.85 μ\mum in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >>6σ\sigma confidence) and evidence for optical opacity, possibly due to H^-, TiO, and VO (combined significance of 3.8σ\sigma). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy element abundance (''metallicity'', M/H = 1.030.51+1.11_{-0.51}^{+1.11} ×\times solar), and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the sub-stellar point that decreases steeply and symmetrically with longitude toward the terminators.Comment: JWST ERS bright star observations. Uploaded to inform JWST Cycle 2 proposals. Manuscript under review. 50 pages, 14 figures, 2 table

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore