47,584 research outputs found
Deformation method for generalized Abelian Higgs-Chern-Simons models
We present an extension of the deformation method applied to self-dual
solutions of generalized Abelian Higgs-Chern-Simons models. Starting from a
model defined by a potential and a non-canonical kinetic term
whose analytical domain wall solutions are
known, we show that this method allows to obtain an uncountable number of new
analytical solutions of new models defined by other functions
and . We present some examples of deformation functions
leading to new families of models and their associated analytic solutions.Comment: 6 pages, 10 figure
Impact of micro-telluric lines on precise radial velocities and its correction
Context: In the near future, new instruments such as ESPRESSO will arrive,
allowing us to reach a precision in radial-velocity measurements on the order
of 10 cm/s. At this level of precision, several noise sources that until now
have been outweighed by photon noise will start to contribute significantly to
the error budget. The telluric lines that are not neglected by the masks for
the radial velocity computation, here called micro-telluric lines, are one such
noise source. Aims: In this work we investigate the impact of micro-telluric
lines in the radial velocities calculations. We also investigate how to correct
the effect of these atmospheric lines on radial velocities. Methods: The work
presented here follows two parallel lines. First, we calculated the impact of
the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum
by synthetic atmospheric spectra and evaluated the effect created by the
presence of the telluric lines. Then, we divided HARPS spectra by synthetic
atmospheric spectra to correct for its presence on real data and calculated the
radial velocity on the corrected spectra. When doing so, one considers two
atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS.
Results: We find that the micro-telluric lines can induce an impact on the
radial velocities calculation that can already be close to the current
precision achieved with HARPS, and so its effect should not be neglected,
especially for future instruments such as ESPRESSO. Moreover, we find that the
micro-telluric lines' impact depends on factors, such as the radial velocity of
the star, airmass, relative humidity, and the barycentric Earth radial velocity
projected along the line of sight at the time of the observation.Comment: Accepted in A&
An effective many-body theory for strongly interacting polar molecules
We derive a general effective many-body theory for bosonic polar molecules in
strong interaction regime, which cannot be correctly described by previous
theories within the first Born approximation. The effective Hamiltonian has
additional interaction terms, which surprisingly reduces the anisotropic
features of dipolar interaction near the shape resonance regime. In the 2D
system with dipole moment perpendicular to the plane, we find that the phonon
dispersion scales as \sqrt{|\bfp|} in the low momentum (\bfp) limit,
showing the same low energy properties as a 2D charged Bose gas with Coulomb
() interactions.Comment: Same as published version (11 pages, 2 figure
Quantum open systems and turbulence
We show that the problem of non conservation of energy found in the
spontaneous localization model developed by Ghirardi, Rimini and Weber is very
similar to the inconsistency between the stochastic models for turbulence and
the Navier-Stokes equation. This sort of analogy may be useful in the
development of both areas.Comment: to appear in Physical Review
Aplicação de ácido húmico via fertirrigação na produtividade da bananeira BRS Tropical.
Os ácidos húmicos constituem a maior fração da matéria orgânica do solo. A parte mais estável do carbono presente na matéria orgânica do solo e são cruciais no conceito de desenvolvimento sustentável, devido à sua influência na manutenção da qualidade do solo
Topological Approach to Microcanonical Thermodynamics and Phase Transition of Interacting Classical Spins
We propose a topological approach suitable to establish a connection between
thermodynamics and topology in the microcanonical ensemble. Indeed, we report
on results that point to the possibility of describing {\it interacting
classical spin systems} in the thermodynamic limit, including the occurrence of
a phase transition, using topology arguments only. Our approach relies on Morse
theory, through the determination of the critical points of the potential
energy, which is the proper Morse function. Our main finding is to show that,
in the context of the studied classical models, the Euler characteristic
embeds the necessary features for a correct description of several
magnetic thermodynamic quantities of the systems, such as the magnetization,
correlation function, susceptibility, and critical temperature. Despite the
classical nature of the studied models, such quantities are those that do not
violate the laws of thermodynamics [with the proviso that Van der Waals loop
states are mean field (MF) artifacts]. We also discuss the subtle connection
between our approach using the Euler entropy, defined by the logarithm of the
modulus of per site, and that using the {\it Boltzmann}
microcanonical entropy. Moreover, the results suggest that the loss of
regularity in the Morse function is associated with the occurrence of unstable
and metastable thermodynamic solutions in the MF case. The reliability of our
approach is tested in two exactly soluble systems: the infinite-range and the
short-range models in the presence of a magnetic field. In particular, we
confirm that the topological hypothesis holds for both the infinite-range () and the short-range () models. Further studies are very
desirable in order to clarify the extension of the validity of our proposal
Building analytical three-field cosmological models
A difficult task to deal with is the analytical treatment of models composed
by three real scalar fields, once their equations of motion are in general
coupled and hard to be integrated. In order to overcome this problem we
introduce a methodology to construct three-field models based on the so-called
"extension method". The fundamental idea of the procedure is to combine three
one-field systems in a non-trivial way, to construct an effective three scalar
field model. An interesting scenario where the method can be implemented is
within inflationary models, where the Einstein-Hilbert Lagrangian is coupled
with the scalar field Lagrangian. We exemplify how a new model constructed from
our method can lead to non-trivial behaviors for cosmological parameters.Comment: 11 pages, and 3 figures, updated version published in EPJ
Collective modes in relativistic npe matter at finite temperature
Isospin and density waves in neutral neutron-proton-electron (npe) matter are
studied within a relativistic mean-field hadron model at finite temperature
with the inclusion of the electromagnetic field. The dispersion relation is
calculated and the collective modes are obtained. The unstable modes are
discussed and the spinodals, which separate the stable from the unstable
regions, are shown for different values of the momentum transfer at various
temperatures. The critical temperatures are compared with the ones obtained in
a system without electrons. The largest critical temperature, 12.39 MeV, occurs
for a proton fraction y_p=0.47. For y_p=0.3 we get =5 MeV and for
y_p>0.495 MeV.
It is shown that at finite temperature the distillation effect in asymmetric
matter is not so efficient and that electron effects are particularly important
for small momentum transfers.Comment: 10 pages, 6 figure
The CORALIE survey for southern extra-solar planets. X. A Hot Jupiter orbiting HD73256
Recent radial-velocity measurements obtained with the CORALIE spectrograph on
the 1.2-m Euler Swiss telescope at La Silla unveil the presence of a new
Jovian-mass Hot Jupiter around HD 73256. The 1.85-M_Jup planet moves on an
extremely short-period (P=2.5486 d), quasi-circular orbit. The best Keplerian
orbital solution is presented together with an unsuccessful photometric
planetary-transit search performed with the SAT Danish telescope at La Silla.
Over the time span of the observations, the photometric follow-up of the
candidate has nevertheless revealed a P=14-d photometric periodicity
corresponding to the rotational period of the star. This variation as well as
the radial-velocity jitter around the Keplerian solution are shown to be
related to the fair activity level known for HD 73256.Comment: 7 pages, 7 figures. Accepted in A&
- …