4,130 research outputs found
Momentum distribution of Vinen turbulence in trapped atomic Bose-Einstein condensates
The decay of multicharged vortices in trapped Bose-Einstein condensates may
lead to a disordered vortex state consistent with the Vinen regime of
turbulence, characterized by an absence of large-scale flow and an
incompressible kinetic energy spectrum . In this work, we
study numerically the dynamics of a three-dimensional harmonically trapped
Bose-Einstein condensate excited to a Vinen regime of turbulence through the
decay of two doubly-charged vortices. First, we study the momentum distribution
and observe the emergence of a power-law behavior
consistent with the coexistence of wave turbulence. We also study the kinetic
energy and particle fluxes, which allows us to identify a direct particle
cascade associated with the turbulent stage.Comment: 5 pages, 2 figure
A peripheral blood mononuclear cell-based in vitro model: A tool to explore indoleamine 2, 3-dioxygenase-1 (IDO1)
Background: Proinflammatory cytokines powerfully induce the rate-limiting enzyme indoleamine 2, 3-dioxygenase-1 (IDO-1) in dendritic cells (DCs) and monocytes, it converts tryptophan (Trp) into L-kynurenine (KYN), along the kynurenine pathway (KP). This mechanism represents a crucial innate immunity regulator that can modulate T cells. This work explores the role of IDO1 in lymphocyte proliferation within a specific proinflammatory milieu. Methods: Peripheral blood mononuclera cells (PBMCs) were isolated from buffy coats taken from healthy blood donors and exposed to a pro-inflammatory milieu triggered by a double-hit stimulus: lipopolysaccharide (LPS) plus anti-CD3/CD28. The IDO1 mRNA levels in the PBMCs were measured by RT-PCR; the IDO1 activity was analyzed using the KYN/Trp ratio, measured by HPLC-EC; and lymphocyte proliferation was measured by flow cytometry. Trp and epacadostat (EP) were used as an IDO1 substrate and inhibitor, respectively. KYN, which is known to modulate Teffs, was tested as a positive control in lymphocyte proliferation. Results: IDO1 expression and activity in PBMCs increased in an in vitro pro-inflammatory milieu. The lymphoid stimulus increased IDO1 expression and activity, which supports the interaction between the activated lymphocytes and the circulating myeloid IDO1-expressing cells. The addition of Trp decreased lymphocyte proliferation but EP, which abrogated the IDO1 function, had no impact on proliferation. Additionally, incubation with KYN seemed to decrease the lymphocyte proliferation. Conclusion: IDO1 inhibition did not change T lymphocyte proliferation. We present herein an in vitro experimental model suitable to measure IDO1 expression and activity in circulating myeloid cells
Toward the Mechanistic Understanding of Enzymatic CO2 Reduction
SFRH/BD/116515/2014
PTDC/BBB-EBB/2723/2014
UID/Multi/04378/2019
grant agreement number 810856Reducing CO2 is a challenging chemical transformation that biology solves easily, with high efficiency and specificity. In particular, formate dehydrogenases are of great interest since they reduce CO2 to formate, a valuable chemical fuel and hydrogen storage compound. The metal-dependent formate dehydrogenases of prokaryotes can show high activity for CO2 reduction. Here, we report an expression system to produce recombinant W/Sec-FdhAB from Desulfovibrio vulgaris Hildenborough fully loaded with cofactors, its catalytic characterization and crystal structures in oxidized and reduced states. The enzyme has very high activity for CO2 reduction and displays remarkable oxygen stability. The crystal structure of the formate-reduced enzyme shows Sec still coordinating the tungsten, supporting a mechanism of stable metal coordination during catalysis. Comparison of the oxidized and reduced structures shows significant changes close to the active site. The DvFdhAB is an excellent model for studying catalytic CO2 reduction and probing the mechanism of this conversion.publishersversionpublishe
Interaction of [(VO)-O-IV(acac)(2)] with Human Serum Transferrin and Albumin
VO(acac)(2)] is a remarkable vanadium compound and has potential as a therapeutic drug. It is important to clarify how it is transported in blood, but the reports addressing its binding to serum proteins have been contradictory. We use several spectroscopic and mass spectrometric techniques (ESI and MALDI-TOF), small-angle X-ray scattering and size exclusion chromatography (SEC) to characterize solutions containing [VO(acac)(2)] and either human serum apotransferrin (apoHTF) or albumin (HSA). DFT and modeling protein calculations are carried out to disclose the type of binding to apoHTF. The measured circular dichroism spectra, SEC and MALDI-TOF data clearly prove that at least two VOacac moieties may bind to apoHTF, most probably forming [(VO)-O-IV(acac)(apoHTF)] complexes with residues of the HTF binding sites. No indication of binding of [VO(acac)(2)] to HSA is obtained. We conclude that (VO)-O-IV-acac species may be transported in blood by transferrin. At very low complex concentrations speciation calculations suggest that [(VO)(apoHTF)] species form.Fundacao para a Ciencia e Tecnologia (FCT), Portugal [ RECI/QEQMED/0330/2012, PTDC/QEQ-MED/1902/2014]FCT [IF/00100/2013, IF/00007/2015]PROTEOMASS Scientific SocietyUCIBIO, Unidade de Ciencias Biomoleculares Aplicadas [UID/Multi/04378/2013]ERDF [POCI-01-0145-FEDER-007728, POCI-01-0145-FEDER-007265]info:eu-repo/semantics/publishedVersio
Comparison of thermo-hydraulic performance among different 3D printed periodic open cellular structures
As additive manufacturing of periodic open cellular structures (POCS) is gaining interest in structured catalytic reactor research, this work seeks to thermohydraulically compare the well-known Kelvin lattice structure with the lesser-researched BCC and gyroid lattice structures. Using a combined CFD (Computational Fluid Dynamic) and experimental approach, the selected POCS are fabricated through Laser Powder Bed Fusion (LPBF), characterized, and subsequently subjected to numerical analysis. From the manufacturability point of view, the 3D printed samples closely matched their CAD designs, showing a maximum porosity deviation of 15% below design values. A CFD model, validated through pressure drop experiment, was employed to compare the POCS designs on shared geometric attributes such as specific surface area and porosity. While all structures exhibited comparable performance in term of heat and momentum transfer, our findings suggest that the Gyroid lattice may provide the optimal balance between momentum and heat transfer rates in low-velocity region. Conversely, the BCC configuration may be more favourable at higher velocity. An Ergun-like correlation was also developed and validated for each lattice type, with a Mean Absolute Percentage Error (MAPE) below 10%. Our pressure drop results align quite well with existing literature correlations, showing a MAPE under 20%. Concerning heat transfer, the values forecasted in this research show a reasonable alignment with literature's results, though they tend to be on the lower spectrum.</p
Thermofluor-Based Optimization Strategy for the Stabilization of Recombinant Human Soluble Catechol-O-Methyltransferase
Funding Information: This work was supported by LaboratĂłrio de FĂĄrmaco-Toxicologia, UBIMedical, and by Centro de CompetĂȘncias em Cloud Computing, co-financed by the European Regional Development Fund (ERDF) through the Programa Operacional Regional do Centro (Centro 2020), in the scope of the Sistema de Apoio Ă Investigação CientĂfica e TecnolĂłgica-Programas Integrados de IC&DT (Centro-01-0145-FEDER-000019-C4). This work was developed within the scope of the CICS-UBI (projects UIDB/00709/2020, UIDP/00709/2020), CICECO-Aveiro Institute of Materials (projects UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020), the Applied Molecular Biosciences Unit UCIBIO (UIDB/04378/2020 and UIDP/04378/2020) and the Associate Laboratory Institute for Health and Bioeconomyâi4HB (project LA/P/0140/2020), which are financed by National Funds from FCT/MCTES. Researchers also acknowledge funding by FEDER through COMPETE 2020âPrograma Operacional Competitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES from the project âIL2BioProâ-PTDC/BII-BBF/30840/2017. Ana M. Gonçalvesâs individual PhD Fellowship (SFRH/BD/147519/2019), Augusto Q. Pedro research contract CEEC-IND/02599/2020 under the Scientific StimulusâIndividual Call, and LuĂs A. Passarinhaâs sabbatical fellowship (SFRH/BSAB/150376/2019) from the Portuguese Foundation for Science and Technology (FCT) within the scope of POCHâAdvanced Formation programs co-funded by European Social Fund and MCTES. Publisher Copyright: © 2022 by the authors.Catechol-O-methyltransferase (COMT) has been involved in a number of medical conditions including catechol-estrogen-induced cancers and a great range of cardiovascular and neurodegenerative diseases such as Parkinsonâs disease. Currently, Parkinsonâs disease treatment relies on a triple prophylaxis, involving dopamine replacement by levodopa, the use of aromatic L-amino acid decarboxylase inhibitors, and the use of COMT inhibitors. Typically, COMT is highly thermolabile, and its soluble isoform (SCOMT) loses biological activity within a short time span preventing further structural and functional trials. Herein, we characterized the thermal stability profile of lysate cells from Komagataella pastoris containing human recombinant SCOMT (hSCOMT) and enzyme-purified fractions (by Immobilized Metal Affinity ChromatographyâIMAC) upon interaction with several buffers and additives by Thermal Shift Assay (TSA) and a biological activity assessment. Based on the obtained results, potential conditions able to increase the thermal stability of hSCOMT have been found through the analysis of melting temperature (Tm) variations. Moreover, the use of the ionic liquid 1-butyl-3-methylimidazolium chloride [C4mim]Cl (along with cysteine, trehalose, and glycerol) ensures complete protein solubilization as well as an increment in the protein Tm of approximately 10 °C. Thus, the developed formulation enhances hSCOMT stability with an increment in the percentage of activity recovery of 200% and 70% when the protein was stored at 4 °C and â80 °C, respectively, for 12 h. The formation of metanephrine over time confirmed that the enzyme showed twice the productivity in the presence of the additive. These outstanding achievements might pave the way for the development of future hSCOMT structural and biophysical studies, which are fundamental for the design of novel therapeutic molecules.publishersversionpublishe
Structural insights of an LCP proteinâLytRâfrom Streptococcus dysgalactiae subs. dysgalactiae through biophysical and in silico methods
The rise of antibiotic-resistant bacterial strains has become a critical health concern. According to the World Health Organization, the market introduction of new antibiotics is alarmingly sparse, underscoring the need for novel therapeutic targets. The LytR-CpsA-Psr (LCP) family of proteins, which facilitate the insertion of cell wall glycopolymers (CWGPs) like teichoic acids into peptidoglycan, has emerged as a promising target for antibiotic development. LCP proteins are crucial in bacterial adhesion and biofilm formation, making them attractive for disrupting these processes. This study investigated the structural and functional characteristics of the LCP domain of LytR from Streptococcus dysgalactiae subsp. dysgalactiae. The protein structure was solved by X-ray Crystallography at 2.80Â Ă
resolution. Small-angle X-ray scattering (SAXS) data were collected to examine potential conformational differences between the free and ligand-bound forms of the LytR LCP domain. Additionally, docking and molecular dynamics (MD) simulations were used to predict the interactions and conversion of ATP to ADP and AMP. Experimental validation of these predictions was performed using malachite green activity assays. The determined structure of the LCP domain revealed a fold highly similar to those of homologous proteins while SAXS data indicated potential conformational differences between the ligand-free and ligand-bound forms, suggesting a more compact conformation during catalysis, upon ligand binding. Docking and MD simulations predicted that the LytR LCP domain could interact with ADP and ATP and catalyze their conversion to AMP. These predictions were experimentally validated by malachite green activity assays, confirming the proteinâs functional versatility. The study provides significant insights into the structural features and functional capabilities of the LCP domain of LytR from S. dysgalactiae subsp. dysgalactiae. These findings pave the way for designing targeted therapies against antibiotic-resistant bacteria and offer strategies to disrupt bacterial biofilm formation
Outcomes of Trypanosoma cruzi and Trypanosoma evansi infections on health of Southern coati (Nasua nasua), crab-eating fox (Cerdocyon thous), and ocelot (Leopardus pardalis) in the Brazilian Pantanal.
The occurrence of Trypanosoma spp. in wild carnivore populations has been intensively investigated during the last decades. However, the impact of these parasites on the health of free-living infected animals has been largely neglected. The Pantanal biome is the world's largest seasonal wetland, harboring a great diversity of species and habitats. This includes 174 species of mammals, of which 20 belong to the order Carnivora. The present study aimed to investigate the effect of Trypanosoma evansi and Trypanosoma cruzi infections and coinfections on the health of the most abundant carnivores in the Pantanal: coati (Nasua nasua), crab-eating fox (Cerdocyon thous), and ocelot (Leopardus pardalis). We captured 39 coatis, 48 crab-eating foxes, and 19 ocelots. Diagnostic tests showed T. cruzi infection in 7 crab-eating foxes and 5 coatis. Additionally, 7 crab-eating foxes, 10 coatis, and 12 ocelots were positive for T. evansi. We observed coinfections in 9 crab-eating foxes, 8 coatis, and 2 ocelots. This is the first report of T. evansi and T. cruzi infection on the health of free-living ocelots and crab-eating foxes. We showed that single T. evansi or T. cruzi infection, as well as coinfection, caused some degree of anemia in all animals, as well as an indirect negative effect on body condition in coatis and crab-eating foxes via anemia indicators and immune investment, respectively. Furthermore, the vigorous immune investment observed in sampled coatis, crab-eating foxes and ocelots infected by T. evansi, T. cruzi and coinfected can be highly harmful to their health. Overall, our results indicate that single and combined infection with T. evansi and T. cruzi represent a severe risk to the health of wild carnivores in the Pantanal region
Observation of two new baryon resonances
Two structures are observed close to the kinematic threshold in the mass spectrum in a sample of proton-proton collision data, corresponding
to an integrated luminosity of 3.0 fb recorded by the LHCb experiment.
In the quark model, two baryonic resonances with quark content are
expected in this mass region: the spin-parity and
states, denoted and .
Interpreting the structures as these resonances, we measure the mass
differences and the width of the heavier state to be
MeV,
MeV,
MeV, where the first and second
uncertainties are statistical and systematic, respectively. The width of the
lighter state is consistent with zero, and we place an upper limit of
MeV at 95% confidence level. Relative
production rates of these states are also reported.Comment: 17 pages, 2 figure
Measurement of the lifetime
Using a data set corresponding to an integrated luminosity of ,
collected by the LHCb experiment in collisions at centre-of-mass energies
of 7 and 8 TeV, the effective lifetime in the
decay mode, , is measured to be ps. Assuming
conservation, corresponds to the lifetime of the light
mass eigenstate. This is the first measurement of the effective
lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm
- âŠ