41 research outputs found

    La protección medioambiental como criterio en la selección de inversiones socialmente responsables: una aproximación multicriterio

    Full text link
    [EN] A greater environmental and ethical awareness of companies and organizations is also ap-plied to portfolio selection. This note aims to put forward a multicriteria model of Goal Programming (GP) to design efficient portfolios considering classic financial criteria and environmental criteria[ES] La mayor concienciación medioambiental y ética de empresas y organizaciones se traslada también a la selección de carteras. En esta nota se propone un modelo multicriterio de programación por me-tas para la selección de carteras incorporando a los criterios clásicos financieros, criterios mediambientalesGarcía-Bernabeu, A.; Pla-Santamaria, D.; Bravo, M.; Pérez-Gladish, B. (2015). The Environmental Protection as a selection criterion in Socially Responsible Investments: A multicriteria approach. Economía Agraria y Recursos Naturales - Agricultural and Resource Economics. 15(1):101-112. doi:10.7201/earn.2015.01.06SWORD10111215

    New high-pressure phase of HfTiO4 and ZrTiO4 ceramics

    Full text link
    We studied the high-pressure effects on the crystalline structure of monoclinic HfTiO4 and ZrTiO4. We found that the compressibility of these ceramics is highly non-isotropic, being the b-axis the most compressible one. In addition, the a-axis is found to have a small and negative compressibility. At 2.7 GPa (10.7 GPa) we discovered the onset of an structural phase transition in HfTiO4 (ZrTiO4), coexisting the low- and high-pressure phases in a broad pressure range. The new high-pressure phase has a monoclinic structure which involves an increase in the Ti-O coordination and a collapse of the cell volume. The equation of state for the low-pressure phase is also determined.Comment: 16 pages, 5 figures, 26 references, Article in Pres

    Cervical spinal cord injury by a low-impact trauma as an unnoticed cause of cardiorespiratory arrest

    Get PDF
    Background: Cardiorespiratory arrest (CA) secondary to traumatic cervical spinal cord injury can occur in minor accidents with low-impact trauma and may be overlooked as the cause of CA in patients admitted in the coronary care unit. Case summary: We present two patients admitted to the coronary care unit because of suspected CA of cardiac origin. Both patients were found in CA with asystole, one after collapsing in a shopping mall and falling down a few steps and the other in the street next to his bicycle. They underwent early pharmacologically induced coma and hypothermia precluding neurological examination. Both patients remained in coma after rewarming, with preserved brainstem reflexes but absent motor response to pain. One patient had post-anoxic myoclonus in the face without limb involvement. In both patients, median nerve somatosensory evoked potentials demonstrated bilateral absence of thalamocortical N19 responses and abnormal cervicomedullary junction potentials (N13 wave). Extensive diagnostic work-up did not find a cardiac cause of the CA, pulmonary thromboembolism, or intracranial haemorrhage. In both patients, cervical spinal cord injury was diagnosed incidentally 5 and 6 days after CA, when a brain magnetic resonance imaging performed to assess post-anoxic brain injuries detected spinal cord hyperintensities with fracture and luxation of the odontoid. Both patients died 11 and 8 days after CA. Discussion: Low-impact traumatic cervical spinal cord injury should be considered in the diagnostic work-up of patients with CA of unknown cause

    Phase behaviour of Ag2CrO4 under compression: Structural, vibrational, and optical properties

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp401524sWe have performed an experimental study of the crystal structure, lattice dynamics, and optical properties of silver chromate (Ag2CrO4) at ambient temperature and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band gap have been accurately determined. When the initial orthorhombic Pnma Ag2CrO4 structure (phase I) is compressed up to 4.5 GPa, a previously undetected phase (phase II) has been observed with a 0.95% volume collapse. The structure of phase II can be indexed to a similar orthorhombic cell as phase I, and the transition can be considered to be an isostructural transition. This collapse is mainly due to the drastic contraction of the a axis (1.3%). A second phase transition to phase III occurs at 13 GPa to a structure not yet determined. First-principles calculations have been unable to reproduce the isostructural phase transition, but they propose the stabilization of a spinel-type structure at 11 GPa. This phase is not detected in experiments probably because of the presence of kinetic barriers. Experiments and calculations therefore seem to indicate that a new structural and electronic description is required to model the properties of silver chromate.This study was supported by the Spanish government MEC under grants MAT2010-21270-C04-01/03/04 and CTQ2009-14596-C02-01, by the Comunidad de Madrid and European Social Fund (S2009/PPQ1551 4161893), by the MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). A.M. and P.R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. J.A.S. acknowledges Juan de la Cierva Fellowship Program for its financial support. Diamond and ALBA Synchrotron Light Sources are acknowledged for provisions of beam time. We also thank Drs. Peral, Popescu, and Fauth for technical support.Santamaría Pérez, D.; Bandiello, E.; Errandonea, D.; Ruiz-Fuertes, J.; Gomis Hilario, O.; Sans, JÁ.; Manjón Herrera, FJ.... (2013). Phase behaviour of Ag2CrO4 under compression: Structural, vibrational, and optical properties. Journal of Physical Chemistry C. 117(23):12239-12248. https://doi.org/10.1021/jp401524sS12239122481172

    Experimental and Theoretical Study of SbPO4 under Compression

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.9b02268.[EN] SbPO4 is a complex monoclinic layered material characterized by a strong activity of the nonbonding lone electron pair (LEP) of Sb. The strong cation LEP leads to the formation of layers piled up along the a axis and linked by weak SbO electrostatic interactions. In fact, Sb has 4-fold coordination with O similarly to what occurs with the P-O coordination, despite the large difference in ionic radii and electronegativity between both elements. Here we report a joint experimental and theoretical study of the structural and vibrational properties of SbPO4 at high pressure. We show that SbPO4 is not only one of the most compressible phosphates but also one of the most compressible compounds of the ABO(4) family. Moreover, it has a considerable anisotropic compression behavior, with the largest compression occurring along a direction close to the a axis and governed by the compression of the LEP and the weak interlayer Sb-O bonds. The strong compression along the a axis leads to a subtle modification of the monoclinic crystal structure above 3 GPa, leading from a 2D to a 3D material. Moreover, the onset of a reversible pressure-induced phase transition is observed above 9 GPa, which is completed above 20 GPa. We propose that the high-pressure phase is a triclinic distortion of the original monoclinic phase. The understanding of the compression mechanism of SbPO4 can aid to improve the ion intercalation and catalytic properties of this layered compound.The authors acknowledge financial support from the Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq - 159754/2018-6, 307199/2018-5, 422250/20163, 201050/2012-9), FAPESP (2013/07793-6), Spanish Ministerio de Economia y Competitividad (MINECO) under projects MALTA Consolider Ingenio 2010 network (MAT2015-71070-REDC and RED2018-102612-T), MAT2016-75586-C4-1/2/3-P, PGC2018-097520-A-I00, FIS2017-83295-P, and PGC2018-094417-B-I00 from Generalitat Valenciana under project PROMETEO/2018/123, and the European Comission under project COMEX. D.S.-P., JA.S., and A.O.d.l.R. acknowledge "Ramim y Cajal" Fellowships for financial support (RyC-2014-15643, RYC-2015-17482, and RyC-2016-20301, respectively). E.L.d. S., A.M., A.B., and P.R-.H. acknowledge computing time provided by Red Espanola de SupercomputaciOn (RES) and MALTA-Cluster.Pereira, ALDJ.; Santamaria-Pérez, D.; Vilaplana Cerda, RI.; Errandonea, D.; Popescu, C.; Da Silva, EL.; Sans-Tresserras, JÁ.... (2020). Experimental and Theoretical Study of SbPO4 under Compression. Inorganic Chemistry. 59(1):287-307. https://doi.org/10.1021/acs.inorgchem.9b02268S287307591Falcão Filho, E. L., Bosco, C. A. C., Maciel, G. S., de Araújo, C. B., Acioli, L. H., Nalin, M., & Messaddeq, Y. (2003). Ultrafast nonlinearity of antimony polyphosphate glasses. Applied Physics Letters, 83(7), 1292-1294. doi:10.1063/1.1601679Nalin, M., Poulain, M., Poulain, M., Ribeiro, S. J. ., & Messaddeq, Y. (2001). Antimony oxide based glasses. Journal of Non-Crystalline Solids, 284(1-3), 110-116. doi:10.1016/s0022-3093(01)00388-xNalin, M., Messaddeq, Y., Ribeiro, S. J. L., Poulain, M., Briois, V., Brunklaus, G., … Eckert, H. (2004). Structural organization and thermal properties of the Sb2O3–SbPO4glass system. J. Mater. Chem., 14(23), 3398-3405. doi:10.1039/b406075jMontesso, M., Manzani, D., Donoso, J. P., Magon, C. J., Silva, I. D. A., Chiesa, M., … Nalin, M. (2018). Synthesis and structural characterization of a new SbPO4-GeO2 glass system. Journal of Non-Crystalline Solids, 500, 133-140. doi:10.1016/j.jnoncrysol.2018.07.005Wang, Y., li, L., & Li, G. (2012). One-step synthesis of SbPO4 hollow spheres by a self-sacrificed template method. RSC Advances, 2(33), 12999. doi:10.1039/c2ra21434bChen, S., Di, Y., Li, T., Li, F., & Cao, W. (2018). Impacts of ionic liquid capping on the morphology and photocatalytic performance of SbPO4 crystals. CrystEngComm, 20(30), 4305-4312. doi:10.1039/c8ce00790jSaadaoui, H., Boukhari, A., Flandrois, S., & Aride, J. (1994). Intercalation of Hydrazine and Amines in Antimony Phosphate. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 244(1), 173-178. doi:10.1080/10587259408050100Biswal, J. B., Garje, S. S., & Revaprasadu, N. (2014). A convenient synthesis of antimony sulfide and antimony phosphate nanorods using single source dithiolatoantimony(III) dialkyldithiophosphate precursors. Polyhedron, 80, 216-222. doi:10.1016/j.poly.2014.04.017Ou, M., Ling, Y., Ma, L., Liu, Z., Luo, D., & Xu, L. (2018). Synthesis and Li-storage property of flower-like SbPO4 microspheres. Materials Letters, 224, 100-104. doi:10.1016/j.matlet.2018.04.059Jones, P. G., Sheldrick, G. M., & Schwarzmann, E. (1980). Antimony(III) arsenic(V) oxide. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 36(8), 1923-1925. doi:10.1107/s0567740880007492Kinberger, B., Danielsen, J., Haaland, A., Jerslev, B., Schäffer, C. E., Sunde, E., & Sørensen, N. A. (1970). The Crystal Structure of SbPO4. Acta Chemica Scandinavica, 24, 320-328. doi:10.3891/acta.chem.scand.24-0320Achary, S. N., Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., Manjón, F. J., Krishna, P. S. R., … Tyagi, A. K. (2013). Experimental and theoretical investigations on the polymorphism and metastability of BiPO4. Dalton Transactions, 42(42), 14999. doi:10.1039/c3dt51823jAlonzo, G., Bertazzi, N., Galli, P., Marci, G., Massucci, M. A., Palmisano, L., … Saiano, F. (1998). In search of layered antimony(III) materials: synthesis and characterization of oxo-antimony(III) catecholate and further studies on antimony(III) phosphate. Materials Research Bulletin, 33(8), 1233-1240. doi:10.1016/s0025-5408(98)00095-6Alonzo, G., Bertazzi, N., Galli, P., Massucci, M. A., Patrono, P., & Saiano, F. (1998). On the synthesis and characterization of layered antimony(III) phosphate and its interaction with moist ammonia and amines. Materials Research Bulletin, 33(8), 1221-1231. doi:10.1016/s0025-5408(98)00094-4Brockner, W., & Hoyer, L. P. (2002). Synthesis and vibrational spectrum of antimony phosphate, SbPO4. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(9), 1911-1914. doi:10.1016/s1386-1425(01)00639-4Sudarsan, V., Muthe, K. ., Vyas, J. ., & Kulshreshtha, S. . (2002). PO43− tetrahedra in SbPO4 and SbOPO4: a 31P NMR and XPS study. Journal of Alloys and Compounds, 336(1-2), 119-123. doi:10.1016/s0925-8388(01)01888-6Errandonea, D., Gomis, O., Santamaría-Perez, D., García-Domene, B., Muñoz, A., Rodríguez-Hernández, P., … Popescu, C. (2015). Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph. Journal of Applied Physics, 117(10), 105902. doi:10.1063/1.4914407Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113Errandonea, D., Gomis, O., Rodríguez-Hernández, P., Muñoz, A., Ruiz-Fuertes, J., Gupta, M., … Bettinelli, M. (2018). High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4. Journal of Physics: Condensed Matter, 30(6), 065401. doi:10.1088/1361-648x/aaa20dLópez-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., … Raptis, C. (2010). Theoretical and experimental study of the structural stability ofTbPO4at high pressures. Physical Review B, 81(14). doi:10.1103/physrevb.81.144126Musselman, M. A., Wilkinson, T. M., Haberl, B., & Packard, C. E. (2018). In situ Raman spectroscopy of pressure‐induced phase transformations in polycrystalline Tb PO 4 , Dy PO 4 , and Gd x Dy (1− x ) PO 4. Journal of the American Ceramic Society, 101(6), 2562-2570. doi:10.1111/jace.15374Muñoz, A., & Rodríguez-Hernández, P. (2018). High-Pressure Elastic, Vibrational and Structural Study of Monazite-Type GdPO4 from Ab Initio Simulations. Crystals, 8(5), 209. doi:10.3390/cryst8050209Ghosh, P. S., Ali, K., & Arya, A. (2018). A computational study of high pressure polymorphic transformations in monazite-type LaPO4. Physical Chemistry Chemical Physics, 20(11), 7621-7634. doi:10.1039/c7cp05587kGomis, O., Lavina, B., Rodríguez-Hernández, P., Muñoz, A., Errandonea, R., Errandonea, D., & Bettinelli, M. (2017). High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4and TmPO4. Journal of Physics: Condensed Matter, 29(9), 095401. doi:10.1088/1361-648x/aa516aRuiz-Fuertes, J., Hirsch, A., Friedrich, A., Winkler, B., Bayarjargal, L., Morgenroth, W., … Milman, V. (2016). High-pressure phase of LaPO4 studied by x-ray diffraction and second harmonic generation. Physical Review B, 94(13). doi:10.1103/physrevb.94.134109Stavrou, E., Tatsi, A., Raptis, C., Efthimiopoulos, I., Syassen, K., Muñoz, A., … Hanfland, M. (2012). Effects of pressure on the structure and lattice dynamics of TmPO4: Experiments and calculations. Physical Review B, 85(2). doi:10.1103/physrevb.85.024117Errandonea, D., & Garg, A. B. (2018). Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates. Progress in Materials Science, 97, 123-169. doi:10.1016/j.pmatsci.2018.04.004Bandiello, E., Errandonea, D., Pellicer-Porres, J., Garg, A. B., Rodriguez-Hernandez, P., Muñoz, A., … Popescu, C. (2018). Effect of High Pressure on the Crystal Structure and Vibrational Properties of Olivine-Type LiNiPO4. Inorganic Chemistry, 57(16), 10265-10276. doi:10.1021/acs.inorgchem.8b01495Achary, S. N., Bevara, S., & Tyagi, A. K. (2017). Recent progress on synthesis and structural aspects of rare-earth phosphates. Coordination Chemistry Reviews, 340, 266-297. doi:10.1016/j.ccr.2017.03.006Bykov, M., Bykova, E., Hanfland, M., Liermann, H.-P., Kremer, R. K., Glaum, R., … van Smaalen, S. (2016). High-Pressure Phase Transformations in TiPO4: A Route to Pentacoordinated Phosphorus. Angewandte Chemie International Edition, 55(48), 15053-15057. doi:10.1002/anie.201608530López-Moreno, S., & Errandonea, D. (2012). Ab initioprediction of pressure-induced structural phase transitions of CrVO4-type orthophosphates. Physical Review B, 86(10). doi:10.1103/physrevb.86.104112Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001Merrill, L., & Bassett, W. A. (1974). Miniature diamond anvil pressure cell for single crystal x‐ray diffraction studies. Review of Scientific Instruments, 45(2), 290-294. doi:10.1063/1.1686607Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112Prescher, C., & Prakapenka, V. B. (2015). DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35(3), 223-230. doi:10.1080/08957959.2015.1059835Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-iErrandonea, D., Muñoz, A., & Gonzalez-Platas, J. (2014). Comment on «High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3» [J. Appl. Phys. 115, 043507 (2014)]. Journal of Applied Physics, 115(21), 216101. doi:10.1063/1.4881057Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188Parlinski, K. Computer Code PHONON; http://wolf.ifj.edu.pl/phonon.Nielsen, O. H., & Martin, R. M. (1985). Quantum-mechanical theory of stress and force. Physical Review B, 32(6), 3780-3791. doi:10.1103/physrevb.32.3780Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials fromab initiocalculations of stress. Physical Review B, 65(10). doi:10.1103/physrevb.65.104104Otero-de-la-Roza, A., Johnson, E. R., & Luaña, V. (2014). Critic2: A program for real-space analysis of quantum chemical interactions in solids. Computer Physics Communications, 185(3), 1007-1018. doi:10.1016/j.cpc.2013.10.026Dewhurst, K.; Sharma, S.; Nordström, L.; Cricchio, F.; Grånäs, O.; Gross, H.; Ambrosch-Draxl, C.; Persson, C.; Bultmark, F.; Brouder, C., The Elk FP-LAPW code; http://elk.sourceforge.net/ (accessed Oct 31, 2019).Manjón, F. J., Vilaplana, R., Gomis, O., Pérez-González, E., Santamaría-Pérez, D., Marín-Borrás, V., … Muñoz-Sanjosé, V. (2013). High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 250(4), 669-676. doi:10.1002/pssb.201200672Pereira, A. L. J., Errandonea, D., Beltrán, A., Gracia, L., Gomis, O., Sans, J. A., … Popescu, C. (2013). Structural study of α-Bi2O3under pressure. Journal of Physics: Condensed Matter, 25(47), 475402. doi:10.1088/0953-8984/25/47/475402Pereira, A. L. J., Gomis, O., Sans, J. A., Pellicer-Porres, J., Manjón, F. J., Beltran, A., … Muñoz, A. (2014). Pressure effects on the vibrational properties ofα-Bi2O3: an experimental and theoretical study. Journal of Physics: Condensed Matter, 26(22), 225401. doi:10.1088/0953-8984/26/22/225401Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826jIbáñez, J., Sans, J. A., Popescu, C., López-Vidrier, J., Elvira-Betanzos, J. J., Cuenca-Gotor, V. P., … Muñoz, A. (2016). Structural, Vibrational, and Electronic Study of Sb2S3 at High Pressure. The Journal of Physical Chemistry C, 120(19), 10547-10558. doi:10.1021/acs.jpcc.6b01276Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110Canepa, P., Hanson, R. M., Ugliengo, P., & Alfredsson, M. (2010). J-ICE: a newJmolinterface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 44(1), 225-229. doi:10.1107/s0021889810049411Sans, J. A., Manjón, F. J., Pereira, A. L. J., Vilaplana, R., Gomis, O., Segura, A., … Ruleova, P. (2016). Structural, vibrational, and electrical study of compressed BiTeBr. Physical Review B, 93(2). doi:10.1103/physrevb.93.024110Pereira, A. L. J., Santamaría-Pérez, D., Ruiz-Fuertes, J., Manjón, F. J., Cuenca-Gotor, V. P., Vilaplana, R., … Sans, J. A. (2018). Experimental and Theoretical Study of Bi2O2Se Under Compression. The Journal of Physical Chemistry C, 122(16), 8853-8867. doi:10.1021/acs.jpcc.8b02194Bai, Y., Srikanth, N., Chua, C. K., & Zhou, K. (2017). Density Functional Theory Study of Mn+1AXn Phases: A Review. Critical Reviews in Solid State and Materials Sciences, 44(1), 56-107. doi:10.1080/10408436.2017.1370577An ab initio study on compressibility of Al-containing MAX-phase carbides. (2013). Journal of Applied Physics, 114(17), 173709. doi:10.1063/1.4829282Bai, Y., Qi, X., He, X., Sun, D., Kong, F., Zheng, Y., … Duff, A. I. (2018). Phase stability and weak metallic bonding within ternary‐layered borides CrAlB, Cr 2 AlB 2 , Cr 3 AlB 4 , and Cr 4 AlB 6. Journal of the American Ceramic Society, 102(6), 3715-3727. doi:10.1111/jace.16206Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257Pereira, A. L. J., Gomis, O., Sans, J. A., Contreras-García, J., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2016). β−Bi2O3under compression: Optical and elastic properties and electron density topology analysis. Physical Review B, 93(22). doi:10.1103/physrevb.93.224111Cuenca-Gotor, V. P., Sans, J. A., Ibáñez, J., Popescu, C., Gomis, O., Vilaplana, R., … Bergara, A. (2016). Structural, Vibrational, and Electronic Study of α-As2Te3 under Compression. The Journal of Physical Chemistry C, 120(34), 19340-19352. doi:10.1021/acs.jpcc.6b06049Korabel’nikov, D. V., & Zhuravlev, Y. N. (2018). Structural, elastic, electronic and vibrational properties of a series of sulfates from first principles calculations. Journal of Physics and Chemistry of Solids, 119, 114-121. doi:10.1016/j.jpcs.2018.03.037Santamaría-Pérez, D., Gracia, L., Garbarino, G., Beltrán, A., Chuliá-Jordán, R., Gomis, O., … Segura, A. (2011). High-pressure study of the behavior of mineral barite by x-ray diffraction. Physical Review B, 84(5). doi:10.1103/physrevb.84.054102Santamaria-Perez, D., Chulia-Jordan, R., Daisenberger, D., Rodriguez-Hernandez, P., & Muñoz, A. (2019). Dense Post-Barite-type Polymorph of PbSO4 Anglesite at High Pressures. Inorganic Chemistry, 58(4), 2708-2716. doi:10.1021/acs.inorgchem.8b03254Hinrichsen, B., Dinnebier, R. E., Liu, H., & Jansen, M. (2008). The high pressure crystal structures of tin sulphate: a case study for maximal information recovery from 2D powder diffraction data. Zeitschrift für Kristallographie - Crystalline Materials, 223(3), 195-203. doi:10.1524/zkri.2008.0017Knight, K. S. (2010). Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Physics and Chemistry of Minerals, 37(8), 529-533. doi:10.1007/s00269-009-0353-8Angel, R. J. Win_Strain; http://www.rossangel.com/text_strain.htm.Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., Gomis, O., Achary, S. N., Popescu, C., … Tyagi, A. K. (2016). High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4. Inorganic Chemistry, 55(10), 4958-4969. doi:10.1021/acs.inorgchem.6b00503Bodenstein, D., Brehm, A., Jones, P. G., Schwarzmann, E., & Sheldrick, G. M. (1982). Darstellung und Kristallstruktur von Arsen(III)phosplior(V)oxid, AsPO4 / Preparation and Crystal Structure of Arsenic(III) Phosphorus(V) Oxide, AsPO4. Zeitschrift für Naturforschung B, 37(2), 136-137. doi:10.1515/znb-1982-0203Ruiz-Fuertes, J., Friedrich, A., Gomis, O., Errandonea, D., Morgenroth, W., Sans, J. A., & Santamaría-Pérez, D. (2015). High-pressure structural phase transition inMnWO4. Physical Review B, 91(10). doi:10.1103/physrevb.91.104109Garg, A. B., Errandonea, D., Rodríguez-Hernández, P., & Muñoz, A. (2016). ScVO4under non-hydrostatic compression: a new metastable polymorph. Journal of Physics: Condensed Matter, 29(5), 055401. doi:10.1088/1361-648x/29/5/055401Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970Hoppe, R. (1970). The Coordination Number– an«Inorganic Chameleon». Angewandte Chemie International Edition in English, 9(1), 25-34. doi:10.1002/anie.197000251Hoppe, R. (1979). Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift für Kristallographie - Crystalline Materials, 150(1-4), 23-52. doi:10.1524/zkri.1979.150.14.23Baur, W. H. (1974). The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(5), 1195-1215. doi:10.1107/s0567740874004560Guńka, P. A., & Zachara, J. (2019). Towards a quantitative bond valence description of coordination spheres – the concepts of valence entropy and valence diversity coordination numbers. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 75(1), 86-96. doi:10.1107/s2052520618017833Ruiz-Fuertes, J., Segura, A., Rodríguez, F., Errandonea, D., & Sanz-Ortiz, M. N. (2012). An

    Compressibility systematics of calcite-type borates : An experimental and theoretical structural study on ABO3 (A = Al, Sc, Fe and In)

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C , copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp4124259The structural properties of calcite-type orthoborates ABO(3) (A = Al, Fe, Sc, and In) have been investigated at high pressures up to 32 GPa. They were studied experimentally using synchrotron powder X-ray diffraction and theoretically by means of ab initio total-energy calculations. We found that the calcite-type structure remains stable up to the highest pressure explored in the four studied compounds. Experimental and calculated static geometries (unit-cell parameters and internal coordinates), bulk moduli, and their pressure derivatives are in good agreement. The compressibility along the c axis is roughly three times that along the a axis. Our data clearly indicate that the compressibility of borates is dominated by that of the [AO(6)] octahedral group and depends on the size of the trivalent A cations. An analysis of the relationship between isomorphic borates and carbonates is also presented, which points to the potentiality of considering borates as chemical analogues of the carbonate mineral family.This study was supported by the Spanish government MEC under Grant Nos.: MAT2010-21270-C04-01/03/04 and CTQ2009-14596-C02-01, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045), by Generalitat Valenciana (GVA-ACOMP-2013-1012), and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). We thank ALBA and Diamond synchrotrons for providing beamtime for the XRD experiments. A.M. and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. J.A.S. and B.G.-D. acknowledge Juan de la Cierva fellowship and FPI programs for financial support. We are gratefully indebted to Dr. Capponi and Dr. Diehl for supplying us single crystals of AlBO3 and FeBO3, respectively.Santamaría Pérez, D.; Gomis Hilario, O.; Sans, JÁ.; Ortiz, HM.; Vegas, Á.; Errandonea, D.; Ruiz-Fuertes, J.... (2014). Compressibility systematics of calcite-type borates : An experimental and theoretical structural study on ABO3 (A = Al, Sc, Fe and In). Journal of Physical Chemistry C. 118(8):4354-4361. https://doi.org/10.1021/jp4124259S43544361118

    Structural and vibrational study of pseudocubic CdIn2Se4 under compression

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp5077565We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se4 transforms into a spinel structure which, according to calculations, is energetically competitive with the initial pseudocubic phase. The phase behavior of this compound under compression and the structural and compressibility trends in AB(2)Se(4) selenides are discussed.This study was supported by the Spanish government MEC under Grant Nos: MAT2013-46649-C4-3-P, MAT2013-46649-C4-2-P, MAT2010-21270-C04-03/04, and CTQ2009-14596-C02-01, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045) and by Generalitat Valenciana (GVA-ACOMP-2013-1012). A.M. and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster, and also to S. Munoz-Rodriguez for providing a data-parsing application. J.A.S. acknowledges Juan de la Cierva fellowship program for financial support.Santamaría Pérez, D.; Gomis, O.; Pereira, ALJ.; Vilaplana Cerda, RI.; Popescu, C.; Sans Tresserras, JÁ.; Manjón Herrera, FJ.... (2014). Structural and vibrational study of pseudocubic CdIn2Se4 under compression. Journal of Physical Chemistry C. 118(46):26987-26999. https://doi.org/10.1021/jp5077565S26987269991184

    Novel therapeutic strategies for patients with NSCLC that do not respond to treatment with EGFR inhibitors

    Get PDF
    Introduction: Treatment with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) yields tumour responses in non-small cell lung cancer (NSCLC) patients harbouring activating EGFR mutations. However, even in long-lasting responses, resistance to EGFR TKIs invariably occurs. Areas covered: This review examines resistance mechanisms to EGFR TKI treatment, which mainly arise from secondary EGFR mutations. Other resistance-inducing processes include mesenchymal\u2013epithelial transition factor (MET) amplification, epithelial\u2013mesenchymal transformation, phenotypic change from NSCLC to small-cell lung carcinoma, and modifications in parallel signalling pathways. Current therapeutic strategies to overcome these EGFR TKI resistance mechanisms focus on the inhibition or blocking of multiple members of the ErbB family. Several molecules which target multiple ErbB receptors are being investigated in NSCLC and other indications including afatinib, an ErbB Family Blocker, as well as dacomitinib and lapatinib. Novel, non-quinazoline, EGFR inhibitors, that also target EGFR activating and resistance (T790M) mutations, are currently under clinical development. Other therapeutic strategies include inhibition of parallel and downstream pathways, using agents which target heat shock protein (HSP)90 orpoly (ADP-ribose) polymerase in addition to mammalian target of rapamycin (mTOR), monoclonal antibodies against the insulin-like growth factor-1 receptor, and fulvestrant-mediated oestrogen receptor regulation. Conclusion: Improved understanding of mechanisms underlying resistance to EGFR TKIs emphasises the importance of a genotype-guided approach to therapy. Elucidation of resistance mechanisms is indeed crucial to target innovative therapeutic approaches and to improve the efficacy of anticancer regimes in NSCLC

    Famílies botàniques de plantes medicinals

    Get PDF
    Facultat de Farmàcia, Universitat de Barcelona. Ensenyament: Grau de Farmàcia, Assignatura: Botànica Farmacèutica, Curs: 2013-2014, Coordinadors: Joan Simon, Cèsar Blanché i Maria Bosch.Els materials que aquí es presenten són els recull de 175 treballs d’una família botànica d’interès medicinal realitzats de manera individual. Els treballs han estat realitzat per la totalitat dels estudiants dels grups M-2 i M-3 de l’assignatura Botànica Farmacèutica durant els mesos d’abril i maig del curs 2013-14. Tots els treballs s’han dut a terme a través de la plataforma de GoogleDocs i han estat tutoritzats pel professor de l’assignatura i revisats i finalment co-avaluats entre els propis estudiants. L’objectiu principal de l’activitat ha estat fomentar l’aprenentatge autònom i col·laboratiu en Botànica farmacèutica
    corecore