16 research outputs found

    Toxicity response of Chlorella microalgae to glyphosate herbicide exposure based on biomass, pigment contents and photosynthetic efficiency

    Get PDF
    The extensive use of glyphosate (N-(phosphonomethyl) glycine) herbicide in agriculture is accompanied by the risk of environmental contamination of aquatic ecosystems. In this study, the effects of glyphosate at different concentrations (50–500 µg ml-1) on three Chlorella species including Chlorella ellipsoidea, Chlorella sorokiniana and Chlorella vulgaris especially in relation to the biomass, pigment contents and photosynthetic efficiency were assessed. After treatment for 24 hr, the acute toxicity results showed that C. vulgaris (IC50 = 449.34 ± 6.20 µg ml-1) was more tolerant to glyphosate than C. ellipsoidea (IC50 = 288.23 ± 23.53 µg ml-1) and C. sorokiniana (IC50 = 174.28 ± 0.50 µg ml-1). After a 72-hr chronic toxicity treatment with glyphosate, glyphosate concentrations decreased to 400–500 µg ml-1 in C. ellipsoidea, 200–300 µg ml-1 in C. sorokiniana and 200–500 µg ml-1 in C. vulgaris respectively. During 24-hr acute toxicity exposure to glyphosate, the pigment contents and maximum quantum efficiency of photosystem II (Fv/Fm) decreased as the concentration of glyphosate increased. Overall, the biomass, pigment contents and photosynthetic efficiency presented a high positive correlation. It is worthwhile to mention that our study provides detailed information on the toxicity and sensitivity of these Chlorella species to glyphosate

    GC-MS profiling, anti-oxidant and anti-diabetic assessments of extracts from microalgae Scenedesmus falcatus (KU.B1) and Chlorella sorokiniana (KU.B2)

    Get PDF
    Microalgae are a potentially valuable source in the food, pharmaceutical and nutraceutical sectors. While biological activities surveys have investigated the pharmaceutical properties of a few microalgae species, there are not many reports covering biological activity studies. This study was carried out to identify the metabolites by gas chromatography-mass spectrometry and evaluate the anti-oxidant, anti-diabetic properties of green algae extracts, Chlorella sorokiniana (KU.B2) and Scenedesmus falcatus (KU.B1). A total of 51 different chemical constituents were detected and tentatively identified. The primary compounds in both microalgae extracts included (R)-2-hexanol (38.67% in C. sorokiniana and 23.53% in S. falcatus), n-hexadecanoic acid (13.58% in C. sorokiniana and 18.94% in S. falcatus) and octadecanoic acid (22.30% in C. sorokiniana and 32.67% in S. falcatus). According to the profiling results, the C. sorokiniana extract exhibited greater anti-oxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (IC50 = 480.30 ±?14.85 µg ml-1), nitric oxide (NO) radical scavenging (562.73 ±?3.52 µg mL-1) and ferric reducing anti-oxidant power (FRAP) of 58.51 ± 2.42 mgTE g-1. Comparatively, the C. sorokiniana extract had higher contents of alpha-glucosidase and alpha-amylase (IC50 = 491.22 ± 78.41 and 2,817.00 ±143.04 µg mL-1, respectively) than the S. falcatus extract. This first report demonstrated anti-diabetic effect of both extracts on diabetic enzymes. The results confirm microalgae's anti-oxidant and anti-diabetic properties and suggest their potential benefits in cosmeceutical, nutraceutical and pharmaceutical applications

    Predicting the Future Distribution of <i>Leucobryum aduncum</i> under Climate Change

    No full text
    Leucobryum aduncum is a moss species reported in many Southeast Asian regions, often found in forests with a high humidity. Climate change may impact the future distribution of this species. This study aimed to model the current distribution and predict the impact of climate change on L. aduncum distribution in the next 50 years across Southeast Asia. In the process, relevant climate variables in the distribution of the species were also identified. The occurrence data of this species with current and future climate models from CMIP6 under moderate (SSP2) scenarios were used to predict current and future L. aduncum distributions. Under the current climate, the predicted suitable areas for L. aduncum included most mountainous areas. However, many Southeast Asian areas showed a lower probability of finding this species in the next 50 years. The distribution area of this species will dramatically decrease by 50.16% in the current area. The most important ecological variables included the “mean temperature of the driest quarter” and the “annual temperature range”. This study suggests the possible impacts of an increased temperature and the scale of climate change on the distribution of sensitive plants like bryophytes

    Green Microalgae Strain Improvement for the Production of Sterols and Squalene

    No full text
    Sterols and squalene are essential biomolecules required for the homeostasis of eukaryotic membrane permeability and fluidity. Both compounds have beneficial effects on human health. As the current sources of sterols and squalene are plant and shark oils, microalgae are suggested as more sustainable sources. Nonetheless, the high costs of production and processing still hinder the commercialization of algal cultivation. Strain improvement for higher product yield and tolerance to harsh environments is an attractive way to reduce costs. Being an intermediate in sterol synthesis, squalene is converted to squalene epoxide by squalene epoxidase. This step is inhibited by terbinafine, a commonly used antifungal drug. In yeasts, some terbinafine-resistant strains overproduced sterols, but similar microalgae strains have not been reported. Mutants that exhibit greater tolerance to terbinafine might accumulate increased sterols and squalene content, along with the ability to tolerate the drug and other stresses, which are beneficial for outdoor cultivation. To explore this possibility, terbinafine-resistant mutants were isolated in the model green microalga Chlamydomonas reinhardtii using UV mutagenesis. Three mutants were identified and all of them exhibited approximately 50 percent overproduction of sterols. Under terbinafine treatment, one of the mutants also accumulated around 50 percent higher levels of squalene. The higher accumulation of pigments and triacylglycerol were also observed. Along with resistance to terbinafine, this mutant also exhibited higher resistance to oxidative stress. Altogether, resistance to terbinafine can be used to screen for strains with increased levels of sterols or squalene in green microalgae without growth compromise

    Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C–P lyase-independent pathway

    No full text
    Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, play a major role in carbon, nitrogen and phosphorus global cycling. Under conditions of increased P availability and nutrient loading, some cyanobacteria are capable of blooming, rapidly multiplying and possibly altering the ecological structure of the ecosystem. Because of their ability of using non-conventional P sources, these microalgae can be used for bioremediation purposes. Under this perspective, the metabolization of the polyphosphonate diethylenetriaminepenta(methylenephosphonic) acid (DTPMP) by the strain CCALA 007 of Anabaena variabilis was investigated using 31P NMR analysis. Results showed a quantitative breakdown of DTPMP by cell-free extracts from cyanobacterial cells grown in the absence of any phosphonate. The identification of intermediates and products allowed us to propose a unique and new biodegradation pathway in which the formation of (N-acetylaminomethyl)phosphonic acid represents a key step. This hypothesis was strengthened by the results obtained by incubating cell-free extracts with pathway intermediates. When Anabaena cultures were grown in the presence of the phosphonate, or phosphorus-starved before the extraction, significantly higher biodegradation rates were found

    Cell Wall Damage-Induced Lignin Biosynthesis Is Regulated by a Reactive Oxygen Species- and Jasmonic Acid-Dependent Process in Arabidopsis1[C][W][OA]

    No full text
    The plant cell wall is a dynamic and complex structure whose functional integrity is constantly being monitored and maintained during development and interactions with the environment. In response to cell wall damage (CWD), putatively compensatory responses, such as lignin production, are initiated. In this context, lignin deposition could reinforce the cell wall to maintain functional integrity. Lignin is important for the plant’s response to environmental stress, for reinforcement during secondary cell wall formation, and for long-distance water transport. Here, we identify two stages and several components of a genetic network that regulate CWD-induced lignin production in Arabidopsis (Arabidopsis thaliana). During the early stage, calcium and diphenyleneiodonium-sensitive reactive oxygen species (ROS) production are required to induce a secondary ROS burst and jasmonic acid (JA) accumulation. During the second stage, ROS derived from the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D and JA-isoleucine generated by JASMONIC ACID RESISTANT1, form a negative feedback loop that can repress each other’s production. This feedback loop in turn seems to influence lignin accumulation. Our results characterize a genetic network enabling plants to regulate lignin biosynthesis in response to CWD through dynamic interactions between JA and ROS
    corecore