10 research outputs found

    Good Agreement Between Modeled and Measured Sulfur and Nitrogen Deposition in Europe, in Spite of Marked Differences in Some Sites

    Get PDF
    Atmospheric nitrogen and sulfur deposition is an important effect of atmospheric pollution and may affect forest ecosystems positively, for example enhancing tree growth, or negatively, for example causing acidification, eutrophication, cation depletion in soil or nutritional imbalances in trees. To assess and design measures to reduce the negative impacts of deposition, a good estimate of the deposition amount is needed, either by direct measurement or by modeling. In order to evaluate the precision of both approaches and to identify possible improvements, we compared the deposition estimates obtained using an Eulerian model with the measurements performed by two large independent networks covering most of Europe. The results are in good agreement (bias <25%) for sulfate and nitrate open field deposition, while larger differences are more evident for ammonium deposition, likely due to the greater influence of local ammonia sources. Modeled sulfur total deposition compares well with throughfall deposition measured in forest plots, while the estimate of nitrogen deposition is affected by the tree canopy. The geographical distribution of pollutant deposition and of outlier sites where model and measurements show larger differences are discussed

    UAV-Based Photogrammetric Tree Height Measurement for Intensive Forest Monitoring

    No full text
    The measurement of tree height has long been an important tree attribute for the purpose of calculating tree growth, volume, and biomass, which in turn deliver important ecological and economical information to decision makers. Tree height has traditionally been measured by indirect field-based techniques, however these methods are rarely contested. With recent advances in Unmanned Aerial Vehicle (UAV) remote sensing technologies, the possibility to acquire accurate tree heights semi-automatically has become a reality. In this study, photogrammetric and field-based tree height measurements of a Scots Pine stand were validated using destructive methods. The intensive forest monitoring site implemented for the study was configured with permanent ground control points (GCPs) measured with a Total Station (TS). Field-based tree height measurements resulted in a similar level of error to that of the photogrammetric measurements, with root mean square error (RMSE) values of 0.304 m (1.82%) and 0.34 m (2.07%), respectively (n = 34). A conflicting bias was, however, discovered where field measurements tended to overestimate tree heights and photogrammetric measurements were underestimated. The photogrammetric tree height measurements of all trees (n = 285) were validated against the field-based measurements and resulted in a RMSE of 0.479 m (2.78%). Additionally, two separate photogrammetric tree height datasets were compared (n = 251), and a very low amount of error was observed with a RMSE of 0.138 m (0.79%), suggesting a high potential for repeatability. This study shows that UAV photogrammetric tree height measurements are a viable option for intensive forest monitoring plots and that the possibility to acquire within-season tree growth measurements merits further study. Additionally, it was shown that negative and positive biases evident in field-based and UAV-based photogrammetric tree height measurements could potentially lead to misinterpretation of results when field-based measurements are used as validation

    Responses of forest ecosystems in Europe to decreasing nitrogen deposition

    Get PDF
    Average nitrogen (N) deposition across Europe has declined since the 1990s. This resulted in decreased N inputs to forest ecosystems especially in Central and Western Europe where deposition levels are highest. While the impact of atmospheric N deposition on forests has been receiving much attention for decades, ecosystem responses to the decline in N inputs received less attention. Here, we review observational studies reporting on trends in a number of indicators: soil acidification and eutrophication, understory vegetation, tree nutrition (foliar element concentrations) as well as tree vitality and growth in response to decreasing N deposition across Europe. Ecosystem responses varied with limited decrease in soil solution nitrate concentrations and potentially also foliar N concentrations. There was no large-scale response in understory vegetation, tree growth, or vitality. Experimental studies support the observation of a more distinct reaction of soil solution and foliar element concentrations to changes in N supply compared to the three other parameters. According to the most likely scenarios, further decrease of N deposition will be limited. We hypothesize that this expected decline will not cause major responses of the parameters analysed in this study. Instead, future changes might be more strongly controlled by the development of N pools accumulated within forest soils, affected by climate change and forest management. We find limited indication for response of Europe's forests to declining N deposition. Reactions have been reported for soil solution NO3 − and potentially foliar N concentrations but not for other indicators.</p

    Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests

    Get PDF
    The drivers of global change, including increases in atmospheric CO2 concentrations, N and S deposition, and climate change, likely affect the nutritional status of forests. Here we show forest foliar concentrations of N, P, K, S and Mg decreased significantly in Europe by 5%, 11%, 8%, 6% and 7%, respectively during the last three decades. The decrease in nutritional status was especially large in Mediterranean and temperate forests. Increasing atmospheric CO2 concentration was well correlated with the decreases in N, P, K, Mg, S concentrations and the increase of N:P ratio. Regional analyses indicated that increases in some foliar nutrient concentrations such as N, S and Ca in northern Europe occurred associated with increasingly favourable conditions of mean annual precipitation and temperature. Crucial changes in forest health, structure, functioning and services, including negative feedbacks on C capture can be expected if these trends are not reversed

    Good Agreement Between Modeled and Measured Sulfur and Nitrogen Deposition in Europe, in Spite of Marked Differences in Some Sites

    Get PDF
    Atmospheric nitrogen and sulfur deposition is an important effect of atmospheric pollution and may affect forest ecosystems positively, for example enhancing tree growth, or negatively, for example causing acidification, eutrophication, cation depletion in soil or nutritional imbalances in trees. To assess and design measures to reduce the negative impacts of deposition, a good estimate of the deposition amount is needed, either by direct measurement or by modeling. In order to evaluate the precision of both approaches and to identify possible improvements, we compared the deposition estimates obtained using an Eulerian model with the measurements performed by two large independent networks covering most of Europe. The results are in good agreement (bias <25%) for sulfate and nitrate open field deposition, while larger differences are more evident for ammonium deposition, likely due to the greater influence of local ammonia sources. Modeled sulfur total deposition compares well with throughfall deposition measured in forest plots, while the estimate of nitrogen deposition is affected by the tree canopy. The geographical distribution of pollutant deposition and of outlier sites where model and measurements show larger differences are discussed

    Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests

    No full text
    Changing environmental conditions may substantially interact with site quality and foreststandcharacteristics,and impactforestgrowthandcarbonsequestration.Understandingtheimpactofthevariousdriversofforestgrowthis thereforecriticaltopredicthowforestecosystemscanrespondtoclimatechange.Weconductedacontinental-scale analysis of recent (1995–2010) forest volume increment data (ΔVol, m3 ha−1 yr−1), obtained from ca. 100,000 coniferous and broadleaved trees in 442 even-aged, single-species stands across 23 European countries. We used multivariatestatisticalapproaches,suchasmixedeffectsmodelsandstructuralequationmodellingtoinvestigatehow Europeanforestgrowthrespondtochangesin11predictors,includingstandcharacteristics,climateconditions,air andsitequality,aswellastheirinteractions.Wefoundthat,despitethelargeenvironmentalgradientsencompassed bytheforestsexamined,standdensityandagewerekeydriversofforestgrowth.Wefurtherdetectedapositive,in some cases non-linear effect of N deposition, most pronounced for beech forests, with a tipping point at ca. 30kgNha−1 yr−1.WiththeexceptionofaconsistenttemperaturesignalonNorwayspruce,climate-relatedpredictorsandground-levelozoneshowedmuchlessgeneralizedrelationshipswithΔVol.Ourresultsshowthat,together withthedrivingforcesexertedbystanddensityandage,Ndepositionisatleastasimportantasclimatetomodulate forestgrowthatcontinentalscaleinEurope,withapotentialnegativeeffectatsiteswithhighNdeposition

    Recent global decline of CO2_2 fertilization effects on vegetation photosynthesis

    Get PDF
    This article has a correction. Please see:Erratum for the Research Article “Recent global decline of CO2 fertilization effects on vegetation photosynthesis” https://science.sciencemag.org/content/371/6529/eabg8637International audienceThe enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2_2) [i.e., the CO2_2 fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined across most terrestrial regions of the globe from 1982 to 2015, correlating well with changing nutrient concentrations and availability of soil water. Current carbon cycle models also demonstrate a declining CFE trend, albeit one substantially weaker than that from the global observations. This declining trend in the forcing of terrestrial carbon sinks by increasing amounts of atmospheric CO2_2 implies a weakening negative feedback on the climatic system and increased societal dependence on future strategies to mitigate climate warming
    corecore