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Abstract 30 

Average nitrogen (N) deposition across Europe has declined since the 1990’s. This resulted in 31 

decreased N inputs to forests especially in Central and Western Europe where deposition is highest. 32 

While the impact of atmospheric N on forests has been receiving much attention for decades, 33 

ecosystem responses to the decline in N inputs have received less attention. Here, we review 34 

observational studies reporting on trends in a number of indicators: soil acidification and 35 

eutrophication, understory vegetation, tree nutrition (foliar element concentrations), tree vitality and 36 

growth in response to decreasing N deposition across Europe. Ecosystem responses varied with limited 37 

decreases in soil solution nitrate and suggested decrease in foliar N concentrations. There was no 38 

large-scale response for understory vegetation, tree growth or vitality. Experimental studies support 39 

the observation of a more distinct reaction of soil solution and foliar element concentrations to 40 

changes in N supply compared to the three other parameters. According to the most likely scenarios, 41 

further decrease of N deposition will be limited. We hypothesize that this expected decline will not 42 

cause major responses of the parameters analysed in this study. Instead, future changes might be more 43 

strongly controlled by the development of N pools accumulated within forest soils, affected by climate 44 

change and forest management. 45 
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Capsule 54 

We find limited indication for response of Europe’s forests to declining N deposition. Reactions have 55 

been reported for soil solution NO3
- and potentially foliar N concentrations but not for other indicators. 56 

 57 

Highlights 58 

 Europe’s forests show limited response to decreasing N deposition 59 

 Potential reactions have been reported for soil solution and foliage concentrations 60 

 Delayed or marginal responses are expected for other forest ecosystem components 61 

 Future decrease of N deposition to forests in Europe will likely be small 62 

  63 



1 Introduction 64 

Anthropogenic emissions have drastically altered the global nitrogen (N) cycle (Fowler et al., 2013; 65 

Galloway et al., 2003; Vitousek et al., 1997), with human activities becoming the dominant contribution 66 

to the annual release of reactive N to the atmosphere (Fowler et al., 2015; Galloway et al., 2004). The 67 

increase in anthropogenic emissions arose from accelerated fossil fuel burning since the industrial 68 

revolution, the advent of the Haber-Bosch process to create reactive N from inert atmospheric N2 at 69 

the start of the 20th century as well as increases in mass transportation and  livestock numbers (Engardt 70 

et al., 2017; Erisman et al., 2011). Today, 18% of the global anthropogenic nitrogen fixation can be 71 

attributed to combustion processes, 55% to fertilizer production and 27% to biological N fixation in 72 

agriculture (Fowler et al., 2015). These activities have created benefits, such as the dependence of a 73 

large part of human nutrition on mineral fertilizers (Erisman et al., 2008). On the other hand, the 74 

release of reactive N causes considerable damages to human health (Van Grinsven et al., 2013) and 75 

induces changes in natural and semi-natural ecosystems, such that N deposition is one of the greatest 76 

threats to global plant diversity (Bobbink et al., 2010; Brink et al., 2011; Clark et al., 2013; Erisman et 77 

al., 2008; Soons et al., 2017; Vitousek et al., 1997). 78 

In Europe N emissions and corresponding deposition increased from pre-industrial times till the mid-79 

1980’s, followed by a decrease since the 1990s (Engardt et al., 2017). The decline in N emissions is due 80 

to a combination of emission abatement policies and economic transformation (Erisman et al., 2003). 81 

In Europe’s forests, N deposition has caused a variety of changes, including impacts on tree 82 

productivity (De Vries et al., 2017b, 2006; Kahle, 2008), tree nutrition reflected in foliar concentrations 83 

(Jonard et al., 2015; Sardans et al., 2016b; Waldner et al., 2015), sensitivity of trees to biotic and abiotic 84 

stress (Bobbink and Hettelingh, 2011), the composition of understory vegetation (Dirnböck et al., 2014; 85 

van Dobben and De Vries, 2017), ectomycorrhizal fungal communities (van der Linde et al., 2018), soil 86 

chemistry and increased leaching of N from forest soils to surface and ground waters (Dise et al., 2009; 87 

Gundersen et al., 2006). In recent decades, much discussion took place to identify the mechanisms as 88 

well as the time frame by which forest ecosystems are impacted by elevated nitrogen deposition. The 89 

concept of nitrogen saturation (Aber et al., 1998, 1989; Ågren and Bosatta, 1988; De Vries and Schulte-90 

Uebbing, 2018; Lovett and Goodale, 2011) suggests a set of reactions including loss of plant species 91 

diversity, N losses with seepage water, soil acidification, and growth reduction. A recent perspective 92 

on the stages of N saturation is depicted in figure 1. The ecological understanding is used to determine 93 

critical loads of N deposition defined as 'a quantitative estimate of an exposure to one or more 94 

pollutants below which significant harmful effects on specified sensitive elements of the environment 95 

do not occur according to present knowledge' (Nilsson and Grennfelt, 1988). Critical loads underpin 96 

emissions protocols at the European scale such as the Revised National Emissions Ceilings Directive 97 

(NECD) and are also applied for example in North America (Pardo et al., 2011; Schindler and Lee, 2010) 98 

and Asia (Duan et al., 2016). Exceedances of critical loads indicate risks for adverse effects on various 99 

aspects of forests, such as tree nutrition and forest biodiversity (De Vries et al., 2015; Nordin et al., 100 

2005; Waldner et al., 2015). 101 

 102 

[Figure 1] 103 
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A large part of the ecological research in this context focused on the responses of forest ecosystems 105 

to elevated N deposition resulting in N saturation or the exceedance of critical loads. However, much 106 

less attention was paid to the potential dynamics of a “recovery” from high N loads although a decline 107 

of N deposition to Europe can be observed since the 1990’s. The average deposition of inorganic N 108 

across all land-use types in Europe decreased from 10.3 kg N ha-1 a-1 in 1990 to 6.6 kg N ha-1 a-1 in 2018 109 

(after Engardt et al. (2017), data kindly provided by Magnuz Engardt and David Simpson). The trends 110 

are distributed heterogeneously in space. While many forests in areas with higher absolute levels of N 111 

deposition (e.g. in Central and Western Europe) experienced decreases of N inputs, less clear trends 112 

have been reported for Northern Scandinavia and parts of Southern Europe (figure 2 and 3). Note that 113 

despite these reductions, 62% of the European ecosystem area was at risk of eutrophication due to 114 

the exceedance of the critical load for eutrophication in 2015 (Slootweg et al., 2015). 115 

This study addresses the response of European forest ecosystems to decreasing N deposition. We 116 

review published results from observational and experimental studies on well-monitored parameters: 117 

soil acidification and eutrophication, foliar chemistry, ground vegetation composition, tree vitality, and 118 

tree growth. This set of indictors covers a range between endpoint metrics, i.e. aspects of the 119 

environment that are directly relevant to people (e.g. tree growth) and midpoint metrics, i.e. 120 

parameters that are well-suited to measure progress towards desired environmental states (e.g. plant 121 

tissue concentrations) (Rowe et al., 2017). While results are limited to Europe, references have also 122 

been included that relate to observations and experiments the United States (US). For a detailed 123 

overview of impacts of reduced N deposition in the US, we refer to Gilliam et al. (2018, in press). 124 

[Figure 2] 125 

 126 

[Figure 3] 127 

2 Soil acidification and eutrophication 128 

Atmospheric deposition of reactive nitrogen compounds such as nitrate (NO3
-) and ammonium (NH4

+) 129 

contributes to acidification and eutrophication of forest soils (Driscoll et al., 2006). Soil acidification 130 

involves accelerated losses of mineral nutrients (base cations, i.e. Ca2+, K+ and Mg2+) and potential for 131 

the mobilization of toxic aluminium (Al), both of which can compromise tree health (Driscoll et al., 132 

2006; Boudot et al., 1994; De Vries et al., 2014; De Wit et al., 2010). N deposition contributes to 133 

elevated soil solution NO3
- concentrations and soil N stocks (Driscoll et al., 2001). This enrichment can 134 

have a variety of effects on trees and ground vegetation, covered in the subsequent chapters. NO3
- 135 

concentrations in soil solution are a good indicator for the soil N status. Important determinants of 136 

NO3
- leaching are the forest floor C/N ratio (Gundersen et al., 1998a) and N deposition rates (Dise and 137 

Wright, 1995), as well as a variety of other site and stand characteristics controlling the ecosystem N 138 

cycling (Lovett and Goodale, 2011). Generally, elevated NO3
- concentrations in soil solution are an 139 

indication of N availability in excess of biotic demand. Spatial patterns of soil solution NO3
- are highly 140 

variable but partly reflect spatial patterns in N deposition, with higher levels in the Netherlands, 141 

Belgium, parts of Germany, Switzerland and Denmark and lower levels in parts of France, Norway, 142 

Northern Sweden and Finland (Boxman et al., 2008; De Vries et al., 2007; Evans et al., 2001; Gundersen 143 

et al., 1998a; Jonard et al., 2012; Mellert et al., 2008; Moffat et al., 2002; Pannatier et al., 2010; Pihl 144 

Karlsson et al., 2011; Rothe et al., 2002; Ukonmaanaho et al., 2014; van der Heijden et al., 2011; 145 



Verstraeten et al., 2012). There are relatively fewer reports of elevated NO3
- in soil solution in Southern 146 

and Eastern Europe, and N deposition is mostly lower in these regions (Waldner et al., 2014).  147 

Observational studies 148 

At the European scale, studies examining trends in soil solution N show weak or non-significant trends. 149 

For example, Johnson et al. (2018) found a weakly significant (p<0.1) reduction in NO3
- concentrations 150 

at 40-80 cm depth corresponding to a decrease of 30% over 10 years when analysing data from 162 151 

plots across Europe between 1995 and 2012. They found no significant trend in 10-20 cm depth. An 152 

earlier analysis (from the early 1990s to 2006) using a similar dataset found mostly non-significant 153 

trends in soil solution inorganic N concentrations (Iost et al., 2012). These studies did not focus 154 

specifically on areas with high N deposition and included many sites from N limited areas of Northern 155 

Europe. Within Europe, national and regional studies show variable results. For example, in the 156 

Netherlands and Flanders soil solution NO3
- declined in response to decreasing N deposition (Boxman 157 

et al., 2008; Verstraeten et al., 2012). In contrast, an intensive study at the site Solling in Germany 158 

found NO3
- continued to leach from a spruce (Picea abies) stand and increased at a beech (Fagus 159 

sylvatica) stand despite decreasing N deposition between 1973 and 2013, indicating a reduction of the 160 

N retention capacity of the soil over time (Meesenburg et al., 2016). Other studies found no trends in 161 

NO3
- soil solution concentrations in connection with stable N deposition (e.g. Alewell et al., 2000.; 162 

Johnson et al., 2013; Pannatier et al., 2010). At a heavily acidified forest in the Czech Republic, NO3
- 163 

concentrations in soil solution declined despite no decrease in N deposition. This was due to an 164 

increase in N uptake by vegetation and changes in organic matter cycling as the soil became less acidic 165 

(Oulehle et al., 2011). 166 

Where soil solution NO3
- decreased, it is generally accompanied by a decrease in base cations and total 167 

Al concentrations, while soil solution pH and acid neutralizing capacity (ANC) showed no uniform 168 

trends in recent decades (Iost et al., 2012; Johnson et al., 2018). In many areas, soil solution continues 169 

to acidify despite the large decreases in sulphur (S), and to a lesser degree, N deposition (Johnson et 170 

al., 2018). The absence of a widespread recovery of soil solution from acidification agrees with trends 171 

in bulk soil chemistry. Cools and De Vos (2011) found that base saturation increased in soils with low 172 

buffering capacity but decreased in soils with initially higher base saturation across Europe. A similar 173 

result was found for the Netherlands between 1990 and 2015 (De Vries et al., 2017a). Table 1 174 

summarizes results on trends of soil solution eutrophication and acidification status from studies 175 

across Europe. 176 

  177 



 178 

Effect Trend 
↑ ↑/↔ ↔ ↔/↓ ↓ 

NO3
-  Meesenburg et al. 

(2016) (Germany) 
Johnson et al. (2013) 
(Ireland), Löfgren and 
Zetterberg (2011), Pihl 
Karlsson et al. (2011) 
(Sweden), Vanguelova et 
al. (2010) (UK) 

Pannatier et al. (2010) 
(Switzerland), Sawicka et 
al. (2016) (UK), 
Ukonmaanaho et al. 
(2014) (Finland) 

Boxman et al. (2008) 
(Netherlands), Oulehle 
et al. (2011) (Czech 
Republic), Verstraeten et 
al. (2012), Verstraeten et 
al. (2017) (Flanders) 

pH Akselsson et al. (2013), 
Löfgren et al. (2011) 
(Sweden), Verstraeten 
et al. (2016) (Flanders) 

Vanguelova et al. (2010), 
Sawicka et al. (2016) 
(UK), Fölster et al. 
(2003), Löfgren and 
Zetterberg (2011), Pihl 
Karlsson et al. (2011) 
(Sweden), Johnson et al. 
(2013) (Ireland) 

  Boxman et al. (2008) 
(Netherlands), Jonard et 
al. (2012) (Wallonia) 

BC   Vanguelova et al. (2010) 
(UK), Johnson et al. 
(2013) (Ireland) 

Graf Pannatier et al. 
(2011) (Switzerland), 
Sawicka et al. (2016) 
(UK) 

Jonard et al. (2012) 
(Wallonia), Verstraeten 
et al. (2012) (Flanders), 
Boxman et al. (2008) 
(Netherlands), Fölster et 
al. (2003), Akselsson et 
al. (2013) (Sweden) 

Altot Jonard et al. (2012) 
(Wallonia), Fölster et al. 
(2003) (Sweden) 

 Sawicka et al. (2016) 
(UK) 

Vanguelova et al. (2010), 
Löfgren et al. (2011), 
Löfgren and Zetterberg 
(2011), Pihl Karlsson et 
al. (2011) (Sweden), 
Johnson et al. (2013) 
(Ireland) 

Verstraeten et al. (2012) 
(Flanders), Boxman et al. 
(2008) (Netherlands) 

BC:Altot  Meesenburg et al. 
(2016) (Germany) 

 Graf Pannatier et al. 
(2011) (Switzerland) 

Verstraeten et al. (2012) 
(Flanders) 

ANC Akselsson et al. (2013), 
Löfgren et al. (2011) 
(Sweden), Verstraeten 
et al. (2012) (Flanders) 

Fölster et al. (2003), 
Löfgren and Zetterberg 
(2011), Pihl Karlsson et 
al. (2011) (Sweden) 

   

Ionic 
strength 

   Löfgren and Zetterberg 
(2011) (Sweden) 

Löfgren et al. (2011) 
(Sweden), Verstraeten et 
al. (2012) (Flanders), 
Vanguelova et al. (2010) 
(UK) 

Table 1: Summary of trends in soil solution chemical characteristics indicative for eutrophication and 179 

acidification status (concentration of NO3
-, base cations (BC, i.e. Ca2+, K+ and Mg2+) and total aluminium 180 

(Altot), pH, equivalent ratio of BC and Altot (BC:Altot), ANC and ionic strength) from studies across Europe. 181 

Experimental studies 182 

In addition to observational studies, also field experiments provide information on changes of the soil 183 

chemical status under decreasing N deposition. The NITREX and EXMAN nitrogen manipulation 184 

experiments at several sites in Europe are a valuable source of information (Wright and Rasmussen, 185 

1998). At three NITREX sites, throughfall N deposition was brought back from high levels (36-50 kg N 186 

ha-1 a-1) to 5-16 kg N ha-1 a-1 by roofing. A decline in N leaching became apparent within the first three 187 

years of treatment at all three sites (Beier et al., 1998; Boxman et al., 1998; Emmett et al., 1998; 188 

Gundersen et al., 1998b). A similarly fast response in N leaching has been observed from a roofing 189 

experiment in southern Norway (Wright et al., 1993). These results indicate that continuous high N 190 

inputs are required to sustain N leaching in most forest ecosystems, suggesting that decreasing 191 

deposition quickly translates into improvements in soil water quality (Emmett et al., 1998). This, 192 

however, also implies that considerable amounts of N deposited over the last decades are retained 193 

and that the return of the ecosystem to the original N status is potentially slow (Gundersen et al., 194 

1998b). In contrast to these findings, also unchanged or increased N leaching despite decreased 195 

deposition was occasionally reported from observational (Meesenburg et al., 2016) and experimental 196 

studies (Emmett et al., 1998). 197 



Summary 198 

Long-term monitoring data provides information on NO3
- concentrations in soil solution as an indicator 199 

for the soil N status. Despite considerable heterogeneity, indications for a decreasing trend in soil 200 

solution NO3
- concentrations at the European scale exist. Experimental studies tend to report a faster 201 

and more pronounced reaction of soil solution NO3
- concentrations compared to the findings from 202 

large-scale observational studies. In the experiments the magnitude and speed of decrease in N supply 203 

was larger compared to trends in N deposition in most parts of Europe. Furthermore, longer-term 204 

changes in soil microbial activity (e.g. mineralization rates) might be reflected to a larger degree in the 205 

observational studies compared to experimental studies which often focus on the time period 206 

immediately after the onset of the artificial decrease of N supply. Nevertheless, both types of studies 207 

report indications of a response in soil solution NO3
- concentrations to decreases in N deposition.  208 

 209 

3 Understory vegetation 210 

Forests provide habitat for understory vegetation, bryophytes, lichens as well as microbial and animal 211 

communities. While N is a limiting resource for many organisms (Vitousek and Howarth, 1991), the 212 

efficiency with which it is used is species-specific (Chapin, 1980). As a consequence, more N causes 213 

some species to thrive on the expense of others, usually causing a net loss in species diversity (Suding 214 

et al., 2005). Besides this effect on interspecific competition, changes in N deposition can also modify 215 

herbivory, interactions with fungi and invasibility by exotic species, thereby affecting understory 216 

species composition (Gilliam, 2006). In managed forests, these mechanisms are rarely reflected in the 217 

composition of the main tree species for they are typically intentionally chosen by forest managers. In 218 

contrast, forest understory vegetation, bryophytes, lichens, mycorrhiza, and soil fauna can be expected 219 

to be affected by N availability in addition to other environmental factors such as light availability, 220 

temperature, moisture, and nutrients other than N. The responses of these groups to elevated N 221 

deposition encompass changes in the abundance of species, alteration in the identity of species 222 

(species composition), and pauperization of local and regional species diversity (Bobbink et al., 2010; 223 

Farrer and Suding, 2016; Hautier et al., 2009; Nijssen et al., 2017). Figure 4 exemplifies effects of N 224 

deposition on forest understory vegetation for lichen diversity and herb layer plant community 225 

composition. 226 

 227 

[Figure 4] 228 

Observational studies 229 

While there are several observational studies on the reaction of forest understory diversity to elevated 230 

N deposition, to our knowledge, none of them focused specifically on the response to declining N 231 

deposition. These studies confirm an increase in nitrophilic forest understory plant species on the 232 

expense of oligophilic species both in European-wide (Dirnböck et al., 2014; van Dobben and De Vries, 233 

2017) as well as regional approaches (Bobbink and Hettelingh, 2011 and references therein; Heinrichs 234 

and Schmidt, 2016; Keith et al., 2009; Roth et al., 2015). Besides N deposition, litter quality, light 235 

availability, density of large herbivores, and differences in forest management were also important 236 

drivers of change in understory plant communities (Bernhardt-Römermann et al., 2015; Perring et al., 237 



2017; Verheyen et al., 2012). These changes in species composition do not, however, seem to be 238 

accompanied by a broad scale, synchronized decline in plant diversity in European forests (Dirnböck et 239 

al., 2014; van Dobben and De Vries, 2017; Verheyen et al., 2012).  240 

In contrast, elevated N deposition has clearly contributed to a dramatic diversity loss in epiphytic 241 

lichens in many European forests (Bobbink and Hettelingh, 2011; Giordani et al., 2014; Hauck et al., 242 

2013; Mayer et al., 2013). Similarly, major impacts in the community composition and diversity of 243 

mycorrhiza were identified at the European level (Suz et al., 2014; van der Linde et al., 2018) and in 244 

various regional studies (Bobbink and Hettelingh, 2011, references therein). Furthermore, diversity 245 

effects of N deposition on one receptor can indirectly affect others such as soil fauna and mammals 246 

because effects cascade from e.g. plants to animal species (Nijssen et al., 2017) or from soil microbes 247 

to plants (Farrer and Suding, 2016). However, studies detailing the link between N deposition and 248 

animal diversity in Europe’s forests are scarce, partly due to the complex dynamics of animal 249 

populations and corresponding food-webs (Nijssen et al., 2017). 250 

Experimental studies 251 

In addition to these findings from observational studies, a limited number of N manipulation 252 

experiments report on changes in understory vegetation in response to decrease of N input. 253 

Strengbom et al. (2001) compared vascular plant, fungi, and bryophyte communities between control 254 

and treatment plots at two experimental forested sites in Sweden where N fertilization was cancelled 255 

nine and 47 years prior to the analyses, respectively. They found differences in the vascular plant 256 

community at the site where treatment ended nine years ago but no longer at the site where 257 

treatment was cancelled 47 years ago. Nevertheless, the fungi and bryophyte communities deviated 258 

from the control plots at both sites. Sujetovienė and Stakėnas (2007) report on changes in pine forest 259 

understory plant community in response to drastic emission reductions from a close-by fertilizer plant 260 

in Lithuania. They found a decrease in nitrophilous species within the 16 years between two ground 261 

vegetation studies (1988 and 2004). It should be noted that also light conditions and acidity status of 262 

the respective forest stands changed over the same time. In one of the NITREX experiments, N-263 

indicating fern cover significantly decreased after 5 years of reduction of N deposition from 60 kg N ha-264 
1 a-1 to 5 kg N ha-1 a-1 by roofing. A recovery of other species was not recorded, however (Boxman et 265 

al., 1998). 266 

To a limited extent, also findings from grassland vegetation experiments might be informative for 267 

forest understory vegetation response to decreasing N deposition. Stevens et al. (2012) found 268 

significant differences in Ellenberg N values between control and treatment plots 15 years after 269 

cessation of N fertilization in mesotrophic grassland in the UK. Shi et al. (2014) report on the vegetation 270 

composition three years after cessation of N fertilization at a sandy grassland site in Northeast China. 271 

They found that the vegetation at the control and the formerly treated plots still differed although 272 

indications for an ongoing process of recovery were apparent. Storkey et al. (2015) report that 273 

grassland biodiversity largely recovered over a period of 20 years of decreasing N deposition, based on 274 

observations from the control plot of a fertilizer experiment in the UK. The pronounced recovery was 275 

potentially supported by the regular export of N from the ecosystem by haying (Tilman and Isbell, 276 

2015). 277 

Summary 278 



Recent studies based on large-scale monitoring data find shifts in understory community composition 279 

in response to high levels of N deposition, but do not report on responses to decreasing N deposition. 280 

Results from experimental studies suggest that while the recovery of understory vegetation from high 281 

N inputs is possible, time-lags in the order of decades are to be expected. One mechanism causing 282 

these delays is that in regions where high N deposition eradicated source populations, back-283 

colonization will be particularly difficult (Clark and Tilman, 2010; Dullinger et al., 2015). The complex 284 

consequences of such effects have already been shown for land management legacies’ impact on 285 

dispersal dynamics and subsequent community alterations (e.g. Burton et al., 2011). Strong recovery 286 

delay due to dispersal limitation can be expected for epiphytic lichens because regional species 287 

extinctions were particularly pronounced (Hauck et al., 2013). We hypothesize that this delay in the 288 

response of understory vegetation to decreases in N deposition partly explains the absence of 289 

corresponding trends in Europe-scale observational studies. In addition, changes in other 290 

environmental conditions like light availability, forest management, sulphur deposition, habitat loss 291 

and fragmentation, climate impact, and non-native species invasion (see e.g. Perring et al., 2017) 292 

superimpose on the signal of N deposition in forest understory communities. 293 

4 Tree nutrition 294 

Foliar element concentrations and their ratios reflect the nutritional status of trees. Unbalanced N:P 295 

ratios in foliar tissues are frequently associated with defoliation (Bontemps et al., 2011; Ferretti et al., 296 

2015; Veresoglou et al., 2014; Waldner et al., 2015) and an increasing risk of attacks by parasites 297 

(Flückiger and Braun, 1998) and herbivores (Pöyry et al., 2016) as well as decreasing plant capacity to 298 

respond to abiotic stressors such as drought, warming, and frost (Fangmeier et al., 1994; Sardans and 299 

Peñuelas, 2012). Furthermore, changes in N:P ratio in foliar tissues can have several consequences in 300 

forest trophic chains (Peñuelas et al., 2013). For example, increases in foliar-litter N:P ratios have been 301 

associated with shifts in community composition and decreases in species richness in soil communities 302 

and understory vegetation in some European forests (Peñuelas et al., 2013). Unbalanced plant N:P 303 

ratios can reduce the resistance to biotic stressors such as the competition against invasive species 304 

(Sardans et al., 2016a). 305 

Observational studies 306 

The status and trends of tree nutrition are highly variable across Europe. At the European scale, two 307 

recent studies report tendencies of decreasing foliar N concentrations for beech and oak, covering the 308 

periods 1992-2009 and 2000-2015, respectively (Jonard et al., 2015; Sanders et al., 2017b). To a lesser 309 

extent, decreases are also indicated for spruce, while stable or slight increasing foliar N concentrations 310 

are reported for pine (Pinus sylvestris). At the same time, however, the mass per needle/leaf 311 

significantly increased for spruce and beech, causing an overall increase in the c N content per 312 

needle/leaf despite the decreasing concentrations  (“dilution effect”, Jonard et al., 2015). At the local 313 

or regional level, studies based on data from 1990 and onward report stable N concentrations or 314 

moderate changes in both directions (Jonard et al., 2012; Verstraeten et al., 2017; Wellbrock et al., 315 

2016). Analysis restricted to, or including data from before 1990 frequently (Duquesnay et al., 2000; 316 

Hippeli and Branse, 1992; Mellert et al., 2004 for pine; Prietzel et al., 1997; Sauter, 1991) but not always 317 

(Braun et al., 2010; Mellert et al., 2004) report increasing foliar N concentrations or contents across 318 

Europe. Foliar P concentrations decreased continuously according to studies analyzing data from 1990 319 

and onward in the important forest species in central and northern Europe, such as pine, spruce, 320 

beech, and sessile oak (Quercus petraea), resulting in low or deficient foliar P status on 22% - 74% of 321 



the plots depending on tree species (Ferretti et al., 2015; Jonard et al., 2015, 2012; Talkner et al., 2015). 322 

For N:P, increasing ratios have been observed in several studies at European scale based on data after 323 

1990 (Jonard et al., 2015; Sanders et al., 2017a; Talkner et al., 2015). Apart from N:P imbalances, also 324 

trends towards increasing N:K and N:S ratios have been observed in a Europe-wide study while the 325 

N:Mg ratio was decreasing (Jonard et al., 2015).N deposition can cause deficiencies in other nutrients 326 

than N and nutrient imbalances due to a range of effects, including stimulation of plant growth 327 

(dilution effect) and negative effects on tree nutrient acquisition by modifying mycorrhizal associations 328 

(De Witte et al., 2017; Jonard et al., 2015; Peñuelas et al., 2013; Sardans et al., 2016b). Thus, the 329 

decreasing tendencies in foliar concentrations of nutrients other than N and nutrient ratios suggest 330 

that N availability is still high in many regions across Europe and do not imply a recovery from high N 331 

deposition yet. 332 

Experimental studies 333 
 334 
Besides observational studies, a number of experiments provide indication of the reaction of foliar 335 

element concentrations to decreased N supply. In one of the abovementioned NITREX roofing 336 

experiments, a decrease in needle N concentrations and an improvement (reduction) of the N:Mg and 337 

N:K ratio is documented after three years (Boxman et al., 1998). At the other two sites, no significant 338 

reductions in foliar N concentrations were observed six years after the treatment started (Emmett et 339 

al., 1998). Högberg et al. (2006) report average foliar element concentrations for the time period seven 340 

to twelve years after the cessation of an N addition treatment. Foliar N concentration clearly decreased 341 

and other elements showed minor increases. Twenty years after termination of the N fertilization at 342 

the same site, foliar N concentration was still slightly elevated compared to the control (Högberg et 343 

al., 2014). Similarly, Blaško et al. (2013) report a recovery (decrease) of foliar N concentrations based 344 

on measurements 17 and 19 years after the termination of an N fertilization experiment, respectively, 345 

while also still slightly exceeding the levels at the control plot. Results from grassland and moorland 346 

fertilization experiments report that foliar N concentrations had decreased when measured 7-15 years 347 

after cessation of the N addition (Clark et al., 2009; Edmondson et al., 2013; Stevens et al., 2012). These 348 

findings from experiments indicate that decreases in N deposition can be expected to be reflected in 349 

foliar N concentrations with a lag time of a several years. Further indication arises from large-scale 350 

studies highlighting the relation between the spatial pattern of N deposition and foliar N 351 

concentrations and contents, without, however, considering temporal trends (De Vries et al., 2003; 352 

Sardans et al., 2016b). 353 

Summary 354 

Despite the large heterogeneity in trends in tree nutrition, studies based on large-scale long-term 355 

monitoring data have reported tendencies of decreasing foliar N concentrations for beech, oak and to 356 

a lesser extent for spruce. The degree to which decreasing trends in N deposition contribute to these 357 

trends is not clear. (1) The decreasing tendencies of NO3
- concentration in soil solution (see “Soil 358 

acidification and eutrophication”), (2) findings from experimental studies and (3) large-scale studies 359 

on the relation between levels of N deposition and foliar N concentrations suggest that the decrease 360 

in N deposition could have affected foliar N concentrations. On the other hand, the cutback in N 361 

deposition across Europe is typically much smaller compared to experimental treatments and might 362 

have not yet led to a widespread decrease in N availability for tree nutrition in a relevant magnitude 363 

(Braun et al., 2010; Mellert et al., 2017; Riek et al., 2016). The increase in foliar mass (dilution effect, 364 

Jonard et al., 2015) likely explains a considerable proportion of the decrease in foliar N concentrations. 365 



Furthermore, decreasing tendencies in other elements and N:other element ratios do not indicate 366 

recovery from high N availability. Further analyses are required to gain a better understanding where 367 

and to what extent changes in N deposition or other mechanisms control tree nutrition across Europe 368 

and which time lags are involved. 369 

5 Tree vitality 370 

The concept of “vitality” of forests is linked to several inter-related aspects, including above- and 371 

below-ground growth, tree nutrition as well as the susceptibility of trees to biotic (e.g. insects) and 372 

abiotic (e.g. climatic extremes) stress. Tree crown condition is often interpreted as an aggregated 373 

measure of tree vitality because it reflects the impacts of these different environmental drivers. It is 374 

typically measured in the form of the degree of `crown defoliation` (Eichhorn et al., 2016). 375 

Observational studies 376 

Several studies have addressed the link between nitrogen deposition and defoliation at the European 377 

scale (e.g. Ferretti et al., 2015; Klap et al., 2000), but to our knowledge none reports explicitly on the 378 

effect of decreased N deposition. Existing studies focus on the relative importance of air pollution 379 

among other determinants of crown condition like climate, soil, and stand age. The results reflect the 380 

complexity and spatial heterogeneity of the underlying processes. For example, Ferretti et al. (2015) 381 

found that N-related variables improved defoliation models based on data from 71 plots across 382 

Europe. Higher N deposition led to higher percentage of defoliated trees for beech and spruce, while 383 

the effect was opposite for pine. Similarly, Vitale et al. (2014) and De Marco et al. (2014) found aspects 384 

of N deposition to be relevant determinants of crown condition for several species across Europe, with 385 

varying direction of effect. Other studies found weak or no relation between defoliation and N 386 

deposition (Hendriks et al., 2000; Klap et al., 2000; Solberg and Tørseth, 1997; Staszewski et al., 2012). 387 

In a regional study, Armolaitis and Stakenas (2001) report on the response of the crown condition of a 388 

pine forest to emission reductions from a close-by fertilizer plant in Lithuania. Refoliation began 6-7 389 

years after the decrease of air pollution. 390 

Mechanisms of N-induced effects on vitality 391 

The mechanisms by which excess N supply can cause a net decrease in tree vitality can be complex, 392 

interlinked and only episodically apparent, including increased susceptibility to insect attacks, 393 

pathogens, frost and storm damages (Bobbink and Hettelingh, 2011), changes in mycorrhiza (Arnolds, 394 

1991; Braun et al., 2010; De Witte et al., 2017; Duquesnay et al., 2000; Jaenike, 1991; van der Linde et 395 

al., 2018), changes in the rooting system and aluminum toxicity to roots (Dziedek et al., 2017; Godbold 396 

and Kettner, 1991; Haynes, 1982; Jonard et al., 2012; Ostonen et al., 2007), depletion of base cations 397 

due to NO3
- leaching (Jonard et al., 2012; Prietzel et al., 1997) or problematic P supply (Jonard et al., 398 

2015; Mellert and Ewald, 2014; Neirynck et al., 1998; Ochoa-Hueso et al., 2013; Peñuelas et al., 2013; 399 

Sardans et al., 2015; Sardans and Peñuelas, 2012; Thelin et al., 1998). Tree species, stand age, soil, and 400 

meteorological conditions as well as other local factors co-determine these symptoms. 401 

Summary 402 

Tree crown condition provides an aggregated measure of tree vitality. Studies evaluating spatial and 403 

temporal patterns of crown condition based on long-term monitoring data come to different 404 

conclusions regarding the relative importance and direction of the effect of N deposition. To our 405 



knowledge, no large-scale response to decreasing N deposition has been reported. N deposition can 406 

have both a positive (fertilizing) effect on crown condition but also contribute to a range of adverse 407 

mechanisms.We assume that the high complexity and spatio-temporal variability of these mechanisms 408 

is partly causing the difficulty to detect signals of decreasing N deposition in tree vitality. In addition, 409 

factors like stand age, drought, and frost can have strong effects on vitality independent of N 410 

deposition (e.g. Eickenscheidt et al., 2016; Klap et al., 2000). 411 

6 Tree growth  412 

Tree growth is responsible for the primary economic benefit from most forest areas and is an 413 

important process in forest CO2 budgets. Aber et al. (1998) hypothesized that net primary production 414 

of trees will show an increasing and then decreasing (unimodal) response with ongoing nitrogen 415 

saturation (comp. figure 1). The underlying assumption is that low to moderate levels of N deposition 416 

will relieve trees from growth limitation due to originally widespread N shortage (Aber et al., 1995; De 417 

Vries et al., 2009; Kahle, 2008; Schulte-Uebbing and De Vries, 2017; Solberg et al., 2009; Sutton et al., 418 

2008; Vitousek and Howarth, 1991). However, when N deposition exceeds a certain level, the 419 

stimulating effects diminish due to the antagonistic effects applying to overall tree vitality (see above), 420 

e.g. of soil acidification, nutrient imbalances and increased susceptibility to biotic and abiotic stress 421 

(Aber et al., 1998; De Vries et al., 2014; Dobbertin, 2005). For example, beneficial effects for tree 422 

growth by recovery from acidification have been documented in Europe and the US (Mathias and 423 

Thomas, 2018; Juknys et al., 2014). 424 

There are various broad-scale and regional studies investigating the effect of N deposition on tree 425 

growth, while accounting for the impacts of other drivers, such as changes in temperature and 426 

precipitation (e.g. Braun et al., 2017; Kint et al., 2012; Kolář et al., 2015; Solberg et al., 2009). In these 427 

studies, changes in growth patterns have rarely been explicitly linked to declining trends in nitrogen 428 

deposition. In some cases, a simultaneous decrease in S and N deposition complicated the separation 429 

of effects (Juknys et al., 2014; Nellemann and Thomsen, 2001). However, the results of these studies 430 

can be used to derive indications for the threshold level of N deposition at which growth enhancement 431 

and growth reductions can be expected (Braun et al., 2017; Kint et al., 2012). For example, field 432 

monitoring data of forest growth at more than 300 plots in Europe suggest a non-linear growth 433 

response to N deposition between 3 and 60 kg N ha–1yr–1 with a threshold near 35 kg N ha–1yr–1 (Solberg 434 

et al., 2009). Kint et al. (2012) documented a non-linear growth response, in terms of basal area 435 

increment (BAI), to increasing N availability for 180 oak and beech plots in Flanders throughout the 436 

20th century (the period 1901–2008). They found positive effects of N deposition on BAI up to 20–30 437 

kg N ha−1 yr−1 and declining growth above these levels. Etzold et al. (2014) found a non-linear relation 438 

between NPP and N deposition, with the positive effect flattening off at sites with an N deposition 439 

above 20 kg N ha-1yr-1, based on data from intensive monitoring plots in Switzerland. In experimental 440 

and observational studies in forests in Switzerland, Flückiger et al. (2011) found a growth-stimulating 441 

effect of N which turned into no effect or a decrease of growth with increasing duration or magnitude 442 

of the N input. Anders et al. (2002, in Bobbink and Hettelingh, 2011) reported growth-reducing effects 443 

of N deposition on Scots pine stands in the north-east of the German Northern Lowland in the vicinity 444 

of N emission sources with deposition rates exceeding 35 kg N ha-1 a-1, while for other locations and 445 

tree species, accelerated growth was observed at open field deposition rates exceeding 10 to 15 kg N 446 

ha-1 a-1.  447 



Further information for the growth response of trees to different levels of N deposition stems from 448 

field experiments. For example, in one of the NITREX experiments, Boxman et al. (1998) report a 449 

significant increase in growth after three years of artificially decreasing N deposition rates by roofing. 450 

It should be noted, however, that in this experiment not only N but also S deposition decreased. 451 

Högberg et al. (2006) found that very high rates of N addition (90-180 kg N ha-1 a-1) led to increases in 452 

tree growth only until a cumulative amount of approximately 1 t N  ha-1 while further N addition 453 

lowered the gain in wood volume. In a similar experimental setup, Blaško et al. (2013) observed that a 454 

strongly fertilized plot (90-180 kg N ha-1 a-1) had a lower long-term average productivity than other 455 

fertilization levels (30-120 kg N ha-1 a-1) but still more than the control plot. These results support the 456 

perspective that improved N supply has a positive effect on growth in case of N limitation and can act 457 

negatively in case of excess N (Flückiger et al., 2011).  458 

Global meta-analyses also confirm thresholds in the growth response of trees to N deposition. For 459 

example, Tian et al. (2016) analysed a dataset of 44 experimental studies from wetland, grassland, 460 

temperate, and boreal forest (most data are from temperate forest). They found that the effect of N 461 

input on aboveground net primary production switches from increase to decrease at approximately 462 

50-60 kg N ha-1 a-1. Schulte-Uebbing and de Vries (2017) found that the N-induced increase in carbon 463 

sequestration was significantly lower at higher ambient N deposition rates (above 15 kg N ha-1 a-1), 464 

reviewing results from forest fertilization experiments in temperate, boreal and tropical forests. Field 465 

data of maximum rates of photosynthesis against N deposition for 80 forested plots over the world 466 

indicated an increase in photosynthesis up to an N deposition near 10-15 kg N ha-1 a-1 followed by no 467 

further change up to 35 kg N ha-1 a-1 (Fleischer et al., 2013). 468 

Summary 469 

We did not find indications for a large-scale response in tree growth to decreasing N deposition. 470 

However, results from observational and experimental studies corroborate the concept of a unimodal 471 

response of tree growth to N deposition. Estimates of thresholds above which N deposition negatively 472 

affects tree growth range from as low as 15 - 20 kg N ha-1 a-1 to very high levels only relevant under 473 

experimental conditions. This suggests that particularly polluted forest stands mostly located in Central 474 

and Western Europe might have benefitted from declining N deposition, as decreases have been 475 

strongest in the formerly most polluted regions. Few trends in N deposition have been observed in less 476 

polluted areas like Northern Scandinavia, suggesting that a growth decline due to decreased N 477 

deposition in these areas is less likely. 478 

7 Conclusion and outlook 479 

Results from observational studies across Europe for responses in soil, ground vegetation, and trees 480 

(nutrition, growth and vitality) to decreasing N deposition indicate considerable spatial variability in 481 

the trends published for these parameters. For soil solution NO3
- concentrations and potentially also 482 

for changes in foliar N concentrations, indications for a reaction to decreased nitrogen deposition exist. 483 

We found several studies reporting on the effects of N deposition on understory vegetation, tree 484 

growth or tree vitality, but none of them focused specifically on responses to declining N deposition. 485 

For tree growth, these studies suggest a positive effect at low to moderate levels of N deposition and 486 

no or adverse effects at high levels. In line with these findings from observational studies, experimental 487 

studies also report more pronounced reactions of soil solution and foliar concentrations to decreased 488 

nitrogen deposition compared to the other parameters. Stevens (2016) reviewed experimental and 489 



observational studies in grasslands, heathlands, wetlands, and forests for information on the speed of 490 

recovery from high N deposition. Mainly in line with our findings, they report a relatively rapid 491 

response for mobile or plant-available forms of N in soil chemistry and for N contents in plant tissues 492 

across habitats (with the exception of forests showing a slower response in foliar element 493 

concentrations compared to other habitats). Similarly, Rowe et al. (2017) suggest N leaching rates and 494 

(moss) tissue N concentrations as midpoint-metrics, i.e. indicators for effects-based monitoring of 495 

progress towards pollution reduction targets, due to their dynamic response to changing N deposition 496 

rates. 497 

Linking results from observational and experimental studies is problematic due to the more controlled 498 

conditions and the typically faster and stronger cutback of N supply rates in experimental settings 499 

compared to real-world decreases in N deposition. A multitude of confounding factors, including the 500 

joint decrease of N and S deposition (e.g. Armolaitis and Stakenas 2001) complicate the interpretation 501 

of results from observational studies. Furthermore, many of the large-scale observational studies 502 

reviewed in this paper are based on plots which are not distributed representatively across Europe. 503 

The larger monitoring efforts in Central and Western Europe likely led to an overrepresentation of 504 

plots where N deposition remained on a high level despite comparatively large decreases of N 505 

deposition. 506 

Future decrease of N deposition to forests in Europe and associated ecosystem responses will most 507 

likely be limited (figure 3). Simpson et al. (2014) expect only minor reductions in the European 508 

ecosystem area with exceedances of the critical load for nutrient nitrogen (from 64% in 2005 to 50% 509 

in 2050). Under the assumption that soil solution NO3
- concentrations and potentially also foliar N 510 

concentrations track changes in N inputs with a delay of only a few years (see above), limited changes 511 

of these parameters in response to declining N deposition would be expected for the future. For tree 512 

vitality and vitality-related growth effects, time-lags in the recovery from excess N deposition might 513 

be expected due to slow reversal of N-induced soil acidification and changes in mycorrhizal association. 514 

For understory vegetation community composition it has to be questioned whether full recovery can 515 

be expected at all since forest biodiversity is facing a number of additional “extinction debts” such as 516 

habitat loss and fragmentation, climate impact, and non-native species invasion (see e.g. Perring et al., 517 

2017) likely causing further decline in biodiversity (Essl et al., 2015). If at all, these recovery processes 518 

will, however, only become apparent in regions with sufficient absolute magnitude of the cutback in 519 

N deposition. Furthermore, responses will likely be highly heterogeneous in space controlled by site-520 

specific conditions. 521 

In view of our results, a simple reversal of the stages of the classical nitrogen saturation concept (figure 522 

1) does not seem to appropriately reflect the observed and expected responses to decreasing N 523 

deposition. Instead, several forest ecosystem properties seem to react with varying degree of delay to 524 

cutbacks in N deposition. Correspondingly, the overall forest ecosystem state develops on a different 525 

trajectory during the process of N de-saturation compared to N saturation. This hysteresis behavior is 526 

in line with findings from Gilliam et al. (2018, in press), who review results for soil acidification, plant 527 

biodiversity, soil microbial communities, forest carbon (C) and N cycling, and surface water chemistry 528 

with focus on the US. In view of the high variability of forest ecosystems, a set of “recovery types” 529 

could potentially serve to roughly classify the development of major strata of forest sites under 530 

decreasing N deposition. For analytic and predictive purposes, more detailed models will be required 531 

to adequately represent processes of N (de-)saturation. In particular, dynamic modelling approaches 532 

taking complex microbial soil N processes into account may provide insights into the developments of 533 



forest ecosystem N pools accumulated over the last decades (Akselsson et al., 2016; Bonten et al., 534 

2016; Dirnböck et al., 2017; Fleck et al., 2017; Rizzetto et al., 2016; Yu et al., 2016). Under the expected 535 

limited future decrease in N deposition, other controlling factors like climate change and forest 536 

management strategies will probably dominate the changes in N-enriched forests. 537 
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 1213 
Figure 1: Hypothetical relationship between the stage of nitrogen saturation and the effects on 1214 

terrestrial ecosystems in terms of soil processes, vegetation changes and growth. This figure is an 1215 

update of the figure by Aber et al. (1998) (after De Vries and Schulte-Uebbing (2018)). It illustrates the 1216 

trade-off between the initial positive impact of nitrogen enrichment on tree growth and related carbon 1217 

sequestration on the one hand and the negative impact on ecosystem services (e.g. water quality 1218 

regulation by nitrogen retention) and on biodiversity on the other hand. 1219 

 1220 

 1221 



 1222 

Figure 2: Relative change of throughfall deposition of inorganic nitrogen at the intensive monitoring 1223 

sites of the UNECE ICP Forests programme network between 2000 and 2015 (redrawn after Schmitz et 1224 

al., 2018).  Large dots indicate statistically significant trends; trends represented by small dots are not 1225 

statistically significant. 1226 

 1227 



 1228 

Figure 3: Average deposition of oxidized, reduced and total N between 1900 and 2050 to the EU28, 1229 

Norway and Switzerland according to EMEP model results (after Engardt et al. (2017), data kindly 1230 

provided by Magnuz Engardt and David Simpson). Vertical dashed lines indicate the years 1990 and 1231 

2018. Future reductions are expected to be small and inorganic N deposition is likely converging to a 1232 

level approximately twice as high compared to 1900. 1233 

 1234 



 1235 

Figure 4: Examples for the effects of N deposition on forest understory vegetation. (a) Relationship 1236 

between lichen diversity (proportion of macrolichen species among all lichen species) and N 1237 

throughfall deposition based on 83 forest plots across Europe. Reprinted from Giordani et al. (2014) 1238 

with permission from Elsevier. (b) Relationship between the occurrence of nitrogen indicating species 1239 

and N throughfall deposition based on a detrended correspondence analysis (DCA) of the floristic 1240 

composition of the herb layer at 488 forest plots in the nemoral zone of Europe. Scores on the fourth 1241 

axis of the DCA are positively correlated with nitrogen deposition. Redrawn from Seidling et al. (2008) 1242 

by permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com). 1243 




