121 research outputs found

    PKCε Overexpression, Irrespective of Genetic Background, Sensitizes Skin to UVR-Induced Development of Squamous-Cell Carcinomas

    Get PDF
    Chronic exposure to UVR is the major etiologic factor in the development of human skin cancers including squamous-cell carcinoma (SCC). We have previously shown that protein Kinase C epsilon (PKCε) transgenic mice on FVB/N background, which overexpress PKCε protein approximately eightfold over endogenous levels in epidermis, exhibit about threefold more sensitivity than wild-type littermates to UVR-induced development of SCC. To determine whether it is PKCε and not the mouse genetic background that determines susceptibility to UVR carcinogenesis, we cross-bred PKCε FVB/N transgenic mice with SKH-1 hairless mice to generate PKCε-overexpressing SKH-1 hairless mice. To evaluate the susceptibility of PKCε SKH-1 hairless transgenic mice to UVR carcinogenesis, the mice were exposed to UVR (1–2KJm−2) three times weekly from a bank of six kodacel-filtered FS40 sunlamps. As compared with the wild-type hairless mice, PKCε overexpression in SKH-1 hairless mice decreased the latency (12 weeks), whereas it increased the incidence (twofold) and multiplicity (fourfold) of SCC. The SKH hairless transgenic mice were observed to be as sensitive as FVB/N transgenic mice to UVR-induced development of SCC and expression of proliferative markers (proliferating cell nuclear antigen, signal transducers and activators of transcription 3, and extracellular signal-regulated kinase 1/2). The results indicate that PKCε level dictates susceptibility, irrespective of genetic background, to UVR carcinogenesis

    Superconducting proximity effect in interacting quantum dots revealed by shot noise

    Full text link
    We study the full counting statistics of charge transport through a quantum dot tunnel-coupled to one normal and one superconducting lead with a large superconducting gap. As function of the level detuning, there is a crossover from a regime with strong superconducting correlations in the quantum dot to a regime in which the proximity effect on the quantum dot is suppressed. We analyze the current fluctuations of this crossover in the shot-noise regime. In particular, we predict that the full counting statistics changes from Poissonian with charge 2e, typical for Cooper pairs, to Poissonian with charge e, when the superconducting proximity effect is present. Thus, the onset of the superconducting proximity effect is revealed by the reduction of the Fano factor from 2 to 1.Comment: 5 pages, 3 figure

    Sushi in the United States, 1945-1970

    Get PDF
    Sushi first achieved widespread popularity in the United States in the mid-1960s. Many accounts of sushi’s US establishment foreground the role of a small number of key actors, yet underplay the role of a complex web of large-scale factors that provided the context in which sushi was able to flourish. This article critically reviews existing literature, arguing that sushi’s US popularity arose from contingent, long-term, and gradual processes. It examines US newspaper accounts of sushi during 1945–1970, which suggest the discursive context for US acceptance of sushi was considerably more propitious than generally acknowledged. Using California as a case study, the analysis also explains conducive social and material factors, and directs attention to the interplay of supply- and demand-side forces in the favorable positioning of this “new” food. The article argues that the US establishment of sushi can be understood as part of broader public acceptance of Japanese cuisine

    Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations

    Get PDF
    Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically confirmed Type Ia supernova (SN Ia) observed in the Kepler field. The Kepler data revealed an excess emission in its early light curve, allowing us to place interesting constraints on its progenitor system. Here we present extensive optical, ultraviolet, and near-infrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3 ± 0.3 days and Δm 15(B) = 0.96 ± 0.03 mag, but it seems to have bluer B − V colors. We construct the "UVOIR" bolometric light curve having a peak luminosity of 1.49 × 1043 erg s−1, from which we derive a nickel mass as 0.55 ± 0.04 M ⊙ by fitting radiation diffusion models powered by centrally located 56Ni. Note that the moment when nickel-powered luminosity starts to emerge is +3.85 days after the first light in the Kepler data, suggesting other origins of the early-time emission, e.g., mixing of 56Ni to outer layers of the ejecta or interaction between the ejecta and nearby circumstellar material or a nondegenerate companion star. The spectral evolution of SN 2018oh is similar to that of a normal SN Ia but is characterized by prominent and persistent carbon absorption features. The C ii features can be detected from the early phases to about 3 weeks after the maximum light, representing the latest detection of carbon ever recorded in an SN Ia. This indicates that a considerable amount of unburned carbon exists in the ejecta of SN 2018oh and may mix into deeper layers

    中流 / Chūryū / Middling

    No full text
    corecore