276 research outputs found
A hydrologic and economic model for water trading and reallocation using linear programming techniques
Abstract: With the advent of water reform framework instigated by the Council of Australian Governments (COAG), water trading on a temporary and permanent basis has become a prominent feature in all major irrigation areas in Australia. Hydrologic network models, such as the Integrated Quantity and Quality Model (IQQM), although powerful in simulating entitlement-based water allocation at the catchment scale, are unable to deal with the water reallocation through trade driven by economic conditions such as crop and water price, variable production costs. To simulate water trading, linear programming techniques are used to maximize aggregate net return subject to land, water, and crop constraints. The volume of water traded is the difference between water allocated and water required for a given simulation period. The water trading model, known as WRAM, is coupled with IQQM for the Murrumbidgee basin. IQQM represents the irrigation area in the Murrumbidgee with 49 regulated irrigation nodes that grow a variety of summer, winter and perennial crops. The water trading model runs whenever a planting decision is required, taking into account water availability, crop growth stages, crop yield and price, variable production costs, fixed and variable water charges on the potential water movement through the distribution network. WRAM provides a dynamic link with IQQM in order to assess the impacts of water management policies at the whole-of-catchment scale. The result reported in this paper is part of a CRC Catchment Hydrology project on hydrologic and economic modelling for sustainable water allocation
Friend or foe? The current epidemiologic evidence on selenium and human cancer risk.
Scientific opinion on the relationship between selenium and the risk of cancer has undergone radical change over the years, with selenium first viewed as a possible carcinogen in the 1940s then as a possible cancer preventive agent in the 1960s-2000s. More recently, randomized controlled trials have found no effect on cancer risk but suggest possible low-dose dermatologic and endocrine toxicity, and animal studies indicate both carcinogenic and cancer-preventive effects. A growing body of evidence from human and laboratory studies indicates dramatically different biological effects of the various inorganic and organic chemical forms of selenium, which may explain apparent inconsistencies across studies. These chemical form-specific effects also have important implications for exposure and health risk assessment. Overall, available epidemiologic evidence suggests no cancer preventive effect of increased selenium intake in healthy individuals and possible increased risk of other diseases and disorders
Relative fat oxidation is higher in children than adults
Background: Prepubescent children may oxidize fatty acids more readily than adults. Therefore, dietary fat needs would be higher for children compared with adults. The dietary fat recommendations are higher for children 4 to 18 yrs (i.e., 25 to 35% of energy) compared with adults (i.e., 20 to 35% of energy). Despite this, many parents and children restrict dietary fat for health reasons. Methods: This study assessed whether rates of fat oxidation are similar between prepubescent children and adults. Ten children (8.7 ± 1.4 yr, 33 ± 13 kg mean ± SD) in Tanner stage 1 and 10 adults (41.6 ± 8 yr, 74 ± 13 kg) were fed a weight maintenance diet for three days to maintain body weight and to establish a consistent background for metabolic rate measurements (all foods provided). Metabolic rate was measured on three separate occasions before and immediately after breakfast and for 9 hrs using a hood system (twice) or a room calorimeter (once) where continuous metabolic measurements were taken. Results: During all three sessions whole body fat oxidation was higher in children (lower RQ) compared to adults (mean RQ= 0.84 ± .016 for children and 0.87 ± .02, for adults, p < 0.02). Although, total grams of fat oxidized was similar in children (62.7 ± 20 g/24 hrs) compared to adults (51.4 ± 19 g/24 hrs), the grams of fat oxidized relative to calorie expenditure was higher in children (0.047 ± .01 g/kcal, compared to adults (0.032 ± .01 p < 0.02). Females oxidized more fat relative to calorie expenditure than males of a similar age. A two way ANOVA showed no interaction between gender and age in terms of fax oxidation. Conclusion: These data suggest that fat oxidation relative to total calorie expenditure is higher in prepubescent children than in adults. Consistent with current dietary guidelines, a moderate fat diet is appropriate for children within the context of a diet that meets their energy and nutrient needs. Originally published Nutrition Journal, Vol. 6, No. 19, Aug 200
Preprandial ghrelin is not affected by macronutrient intake, energy intake or energy expenditure
BACKGROUND: Ghrelin, a peptide secreted by endocrine cells in the gastrointestinal tract, is a hormone purported to have a significant effect on food intake and energy balance in humans. The influence of factors related to energy balance on ghrelin, such as daily energy expenditure, energy intake, and macronutrient intake, have not been reported. Secondly, the effect of ghrelin on food intake has not been quantified under free-living conditions over a prolonged period of time. To investigate these effects, 12 men were provided with an ad libitum cafeteria-style diet for 16 weeks. The macronutrient composition of the diets were covertly modified with drinks containing 2.1 MJ of predominantly carbohydrate (Hi-CHO), protein (Hi-PRO), or fat (Hi-FAT). Total energy expenditure was measured for seven days on two separate occasions (doubly labeled water and physical activity logs). RESULTS: Preprandial ghrelin concentrations were not affected by macronutrient intake, energy expenditure or energy intake (all P > 0.05). In turn, daily energy intake was significantly influenced by energy expenditure, but not ghrelin. CONCLUSION: Preprandial ghrelin does not appear to be influenced by macronutrient composition, energy intake, or energy expenditure. Similarly, ghrelin does not appear to affect acute or chronic energy intake under free-living conditions
The Human Sweet Tooth
Humans love the taste of sugar and the word "sweet" is used to describe not only this basic taste quality but also something that is desirable or pleasurable, e.g., la dolce vita. Although sugar or sweetened foods are generally among the most preferred choices, not everyone likes sugar, especially at high concentrations. The focus of my group's research is to understand why some people have a sweet tooth and others do not. We have used genetic and molecular techniques in humans, rats, mice, cats and primates to understand the origins of sweet taste perception. Our studies demonstrate that there are two sweet receptor genes (TAS1R2 and TAS1R3), and alleles of one of the two genes predict the avidity with which some mammals drink sweet solutions. We also find a relationship between sweet and bitter perception. Children who are genetically more sensitive to bitter compounds report that very sweet solutions are more pleasant and they prefer sweet carbonated beverages more than milk, relative to less bitter-sensitive peers. Overall, people differ in their ability to perceive the basic tastes, and particular constellations of genes and experience may drive some people, but not others, toward a caries-inducing sweet diet. Future studies will be designed to understand how a genetic preference for sweet food and drink might contribute to the development of dental caries
Behavioral genetics and taste
This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste
Understanding sweet-liking phenotypes and their implications for obesity: narrative review and future directions
Building on a series of recent studies that challenge the universality of sweet liking, here we review the evidence for multiple sweet-liking phenotypes which strongly suggest, humans fall into three hedonic response patterns: extreme sweet likers (ESL), where liking increases with sweetness, moderate sweet likers (MSL), who like moderate but not intense sweetness, and sweet dislikers (SD), who show increasing aversion as sweetness increases. This review contrasts how these phenotypes differ in body size and composition, dietary intake and behavioural measures to test the widely held view that sweet liking may be a key driver of obesity. Apart from increased consumption of sugar-sweetened beverages in ESL, we found no clear evidence that sweet liking was associated with obesity and actually found some evidence that SD, rather than ESL, may have slightly higher body fat. We conclude that ESL may have heightened awareness of internal appetite cues that could protect against overconsumption and increased sensitivity to wider reward. We note many gaps in knowledge and the need for future studies to contrast these phenotypes in terms of genetics, neural processing of reward and broader measures of behaviour. There is also the need for more extensive longitudinal studies to determine the extent to which these phenotypes are modified by exposure to sweet stimuli in the context of the obesogenic environment
- …