626 research outputs found

    Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation

    Get PDF
    Developing Coffea arabica seeds accumulate large amounts of chlorogenic acids (CGAs) as a storage form of phenylpropanoid derivatives, making coffee a valuable model to investigate the metabolism of these widespread plant phenolics. However, developmental and environmental regulations of CGA metabolism are poorly understood. In the present work, the expression of selected phenylpropanoid genes, together with CGA isomer profiles, was monitored throughout seed development across a wide set of contrasted natural environments. Although CGA metabolism was controlled by major developmental factors, the mean temperature during seed development had a direct impact on the time-window of CGA biosynthesis, as well as on final CGA isomer composition through subtle transcriptional regulations. We provide evidence that the variability induced by the environment is a useful tool to test whether CGA accumulation is quantitatively modulated at the transcriptional level, hence enabling detection of rate-limiting transcriptional steps [quantitative trait transcripts (QTTs)] for CGA biosynthesis. Variations induced by the environment also enabled a better description of the phenylpropanoid gene transcriptional network throughout seed development, as well as the detection of three temporally distinct modules of quantitatively co-expressed genes. Finally, analysis of metabolite-to-metabolite relationships revealed new biochemical characteristics of the isomerization steps that remain uncharacterized at the gene level

    Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies demonstrate that diverse antidepressant agents increase the cellular production of the nucleolipid CDP-diacylglycerol and its synthetic derivative, phosphatidylinositol, in depression-relevant brain regions. Pharmacological blockade of downstream phosphatidylinositide signaling disrupted the behavioral antidepressant effects in rats. However, the nucleolipid responses were resistant to inhibition by serotonin receptor antagonists, even though antidepressant-facilitated inositol phosphate accumulation was blocked. Could the neurochemical effects be additional to the known effects of the drugs on monoamine transmitter transporters? To examine this question, we tested selected agents in serotonin-depleted brain tissues, in PC12 cells devoid of serotonin transporters, and on the enzymatic activity of brain CDP-diacylglycerol synthase - the enzyme that catalyzes the physiological synthesis of CDP-diacylglycerol.</p> <p>Results</p> <p>Imipramine, paroxetine, and maprotiline concentration-dependently increased the levels of CDP-diacylglycerol and phosphatidylinositides in PC12 cells. Rat forebrain tissues depleted of serotonin by pretreatment with <it>p</it>-chlorophenylalanine showed responses to imipramine or maprotiline that were comparable to respective responses from saline-injected controls. With fluoxetine, nucleolipid responses in the serotonin-depleted cortex or hippocampus were significantly reduced, but not abolished. Each drug significantly increased the enzymatic activity of CDP-diacylglycerol synthase following incubations with cortical or hippocampal brain tissues.</p> <p>Conclusion</p> <p>Antidepressants probably induce the activity of CDP-diacylglycerol synthase leading to increased production of CDP-diacylglycerol and facilitation of downstream phosphatidylinositol synthesis. Phosphatidylinositol-dependent signaling cascades exert diverse salutary effects in neural cells, including facilitation of BDNF signaling and neurogenesis. Hence, the present findings should strengthen the notion that modulation of brain phosphatidylinositide signaling probably contributes to the molecular mechanism of diverse antidepressant medications.</p

    Evolution of Vertebrate Transient Receptor Potential Vanilloid 3 Channels: Opposite Temperature Sensitivity between Mammals and Western Clawed Frogs

    Get PDF
    Transient Receptor Potential (TRP) channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV) subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 Β°C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution

    Deletion of PTH Rescues Skeletal Abnormalities and High Osteopontin Levels in Klothoβˆ’/βˆ’ Mice

    Get PDF
    Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH), Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23βˆ’/βˆ’ and Klothoβˆ’/βˆ’ (Klβˆ’/βˆ’) mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23βˆ’/βˆ’ mice ameliorated the phenotype in Fgf23βˆ’/βˆ’/PTHβˆ’/βˆ’ mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23βˆ’/βˆ’ mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Klβˆ’/βˆ’ (Klβˆ’/βˆ’/PTHβˆ’/βˆ’ or DKO) mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Klβˆ’/βˆ’/PTHβˆ’/βˆ’ mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn) in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23βˆ’/βˆ’/PTHβˆ’/βˆ’ mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Klβˆ’/βˆ’/PTHβˆ’/βˆ’ mice. Moreover, continuous PTH infusion of Klβˆ’/βˆ’ mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Klβˆ’/βˆ’, but not of Fgf23βˆ’/βˆ’ mice, possibly by regulating Opn expression. These are significant new perceptions into the role of PTH in skeletal and disease processes and suggest FGF23-independent interactions of PTH with Klotho

    Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>An open-label Phase 1 study of recombinant prime-boost poxviruses targeting CEA and MUC-1 in patients with advanced pancreatic cancer was conducted to determine safety, tolerability and obtain preliminary data on immune response and survival.</p> <p>Patients and methods</p> <p>Ten patients with advanced pancreatic cancer were treated on a Phase I clinical trial. The vaccination regimen consisted of vaccinia virus expressing tumor antigens carcinoembryonic antigen (CEA) and mucin-1 (MUC-1) with three costimulatory molecules B7.1, ICAM-1 and LFA-3 (TRICOM) (PANVAC-V) and fowlpox virus expressing the same antigens and costimulatory molecules (PANVAC-F). Patients were primed with PANVAC-V followed by three booster vaccinations using PANVAC-F. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was used as a local adjuvant after each vaccination and for 3 consecutive days thereafter. Monthly booster vaccinations for up to 12 months were provided for patients without progressive disease. Peripheral blood was collected before, during and after vaccinations for immune analysis.</p> <p>Results</p> <p>The most common treatment-related adverse events were mild injection-site reactions. Antibody responses against vaccinia virus was observed in all 10 patients and antigen-specific T cell responses were observed in 5 out of 8 evaluable patients (62.5%). Median overall survival was 6.3 months and a significant increase in overall survival was noted in patients who generated anti CEA- and/or MUC-1-specific immune responses compared with those who did not (15.1 vs 3.9 months, respectively; <it>P </it>= .002).</p> <p>Conclusion</p> <p>Poxvirus vaccination is safe, well tolerated, and capable of generating antigen-specific immune responses in patients with advanced pancreatic cancer.</p

    Progression of Mineral Ion Abnormalities in Patients With Jansen Metaphyseal Chondrodysplasia

    Get PDF
    Context: Five different activating PTH/PTH-related peptide (PTHrP) receptor (PTHR1) mutations have been reported as causes of Jansen metaphyseal chondrodysplasia (JMC), a rare disorder characterized by severe growth plate abnormalities and PTH-independent hypercalcemia. / Objectives: Assess the natural history of clinical and laboratory findings in 24 patients with JMC and characterize the disease-causing mutant receptors in vitro. / Patients and Methods: The H223R mutation occurred in 18 patients. T410P, I458R and I458K each occurred in single cases; T410R was present in a father and his two sons. Laboratory records were analyzed individually and in aggregate. / Results: Postnatal calcium levels were normal in most patients, but elevated between 0.15 and 10 years (11.8 Β± 1.37 mg/dL) and tended to normalize in adults (10.0 Β± 1.03 mg/dL). Mean phosphate levels were at the lower end of the age-specific normal ranges. Urinary calcium/creatinine (mg/mg) were consistently elevated (children, 0.80 Β± 0.40; adults, 0.28 Β± 0.19). Adult heights were well below the 3rd percentile for all patients, except for those with the T410R mutation. Most patients with JMC had undergone orthopedic surgical procedures, most had nephrocalcinosis, and two had advanced chronic kidney disease. The five PTHR1 mutants showed varying degrees of constitutive and PTH-stimulated cAMP signaling activity when expressed in HEK293 reporter cells. The inverse agonist [L11,dW12,W23,Y36]PTHrP(7–36) reduced basal cAMP signaling for each PTHR1 mutant. / Conclusions: Except for T410R, the other PTHR1 mutations were associated with indistinguishable mineral ion abnormalities and cause similarly severe growth impairment. Hypercalciuria persisted into adulthood. An inverse agonist ligand effectively reduced in vitro PTH-independent cAMP formation at all five PTHR1 mutants, suggesting a potential path toward therapy

    Novel Anti-Metastatic Action of Cidofovir Mediated by Inhibition of E6/E7, CXCR4 and Rho/ROCK Signaling in HPV+ Tumor Cells

    Get PDF
    Cervical cancer is frequently associated with HPV infection. The expression of E6 and E7 HPV oncoproteins is a key factor in its carcinogenicity and might also influence its virulence, including metastatic conversion. The cellular mechanisms involved in metastatic spread remain elusive, but pro-adhesive receptors and their ligands, such as SDF-1Ξ± and CXCR4 are implicated. In the present study, we assessed the possible relationship between SDF-1Ξ±/CXCR4 signaling, E6/E7 status and the metastatic process. We found that SDF-1Ξ± stimulated the invasion of E6/E7-positive cancer cell lines (HeLa and TC-1) in Matrigel though CXCR4 and subsequent Rho/ROCK activation. In pulmonary metastatic foci generated by TC-1 cells IV injection a high proportion of cells expressed membrane-associated CXCR4. In both cases models (in vitro and in vivo) cell adhesion and invasion was abrogated by CXCR4 immunological blockade supporting a contribution of SDF-1Ξ±/CXCR4 to the metastatic process. E6 and E7 silencing using stable knock-down and the approved anti-viral agent, Cidofovir decreased CXCR4 gene expression as well as both, constitutive and SDF-1Ξ±-induced cell invasion. In addition, Cidofovir inhibited lung metastasis (both adhesion and invasion) supporting contribution of E6 and E7 oncoproteins to the metastatic process. Finally, potential signals activated downstream SDF-1Ξ±/CXCR4 and involved in lung homing of E6/E7-expressing tumor cells were investigated. The contribution of the Rho/ROCK pathway was suggested by the inhibitory effect triggered by Cidofovir and further confirmed using Y-27632 (a small molecule ROCK inhibitor). These data suggest a novel and highly translatable therapeutic approach to cervix cancer, by inhibition of adhesion and invasion of circulating HPV-positive tumor cells, using Cidofovir and/or ROCK inhibition

    Outcomes and factors influencing survival in cirrhotic cases with spontaneous rupture of hepatocellular carcinoma: a multicenter study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous rupture is rare complication of hepatocellular carcinoma (HCC) with high mortality rate in cirrhotic cases. The aim of this study was to determine the factors influencing prognosis in cases of spontaneously ruptured HCC and to investigate the outcomes of the treatments employed, especially transcatheter arterial embolization (TAE).</p> <p>Methods</p> <p>A retrospective multicenter study was conducted in 48 cirrhotic patients with spontaneous rupture of HCC. Conservative treatment was employed in 32 patients (ConT group) and TAE was performed in 16 patients (TAE group).</p> <p>Results</p> <p>The median survival time (MST) in the ConT group was only 13.1 days and the survival rate was extremely poor: 59.4% at 7 days, 37.5% at 14 days, and 6.3% at 30 days. On the other hand, the MST in the TAE group was 244.8 days and the survival rate was 87.5% at 1 month, 56.3% at 3 months, 23.4% at 12 months, and 15.6% at 24 months. According to the results of univariate analyses, factors associated with poor hepatic function and poor suitability for TAE was important determinants of short-term death (less than 3 weeks) among the patients (<it>p </it>< 0.05). On the other hand, among the patients in whom initial TAE was successfully performed (<it>n </it>= 15), a multivariate analysis showed that a maximum tumor size not exceeding 7 cm was the only independent factor determining long-term survival (<it>p </it>= 0.0130).</p> <p>Conclusion</p> <p>Despite the inherent limitations of this retrospective study, TAE appears to be a useful treatment strategy for cirrhotic patients with spontaneous HCC rupture, as it yielded a longer survival period compared with conservative treatment in patients with ruptured HCC. Among the patients with ruptured HCC in whom initial TAE was successfully performed, the maximum tumor size was an important factor influencing survival.</p

    Association between the SERPING1 Gene and Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in Japanese

    Get PDF
    PURPOSE: Recently, a complement component 1 inhibitor (SERPING1) gene polymorphism was identified as a novel risk factor for age-related macular degeneration (AMD) in Caucasians. We aimed to investigate whether variations in SERPING1 are associated with typical AMD or with polypoidal choroidal vasculopathy (PCV) in a Japanese population. METHODS: We performed a case-control study in a group of Japanese patients with typical AMD (nβ€Š=β€Š401) or PCV (nβ€Š=β€Š510) and in 2 independent control groups--336 cataract patients without age-related maculopathy and 1,194 healthy Japanese individuals. Differences in the observed genotypic distribution between the case and control groups were tested using chi-square test for trend. Age and gender were adjusted using logistic regression analysis. RESULTS: We targeted rs2511989 as the haplotype-tagging single nucleotide polymorphism (SNP) for the SERPING1 gene, which was reported to be associated with the risk of AMD in Caucasians. Although we compared the genotypic distributions of rs2511989 in typical AMD and PCV patients against 2 independent control groups (cataract patients and healthy Japanese individuals), SERPING1 rs2511989 was not significantly associated with typical AMD (Pβ€Š=β€Š0.932 and 0.513, respectively) or PCV (Pβ€Š=β€Š0.505 and 0.141, respectively). After correction for age and gender differences based on a logistic regression model, the difference in genotypic distributions remained insignificant (P>0.05). Our sample size had a statistical power of more than 90% to detect an association of a risk allele with an odds ratio reported in the original studies for rs2511989 for developing AMD. CONCLUSIONS: In the present study, we could not replicate the reported association between SERPING1 and either neovascular AMD or PCV in a Japanese population; thus, the results suggest that SERPING1 does not play a significant role in the risk of developing AMD or PCV in Japanese

    CLIPR-59 regulates TNF-Ξ±-induced apoptosis by controlling ubiquitination of RIP1

    Get PDF
    Tumor necrosis factor-Ξ± (TNF-Ξ±) has important roles in several immunological events by regulating apoptosis and transcriptional activation of cytokine genes. Intracellular signaling mediated by TNF-receptor-type 1 (TNFR1) is constituted by two sequential protein complexes: Complex-I containing the receptor and Complex-II-containing Caspase-8. Protein modifications, particularly ubiquitination, are associated with the regulation of the formation of these complexes. However, the underlying mechanisms remain poorly defined. Here, we identified CLIP-170-related 59 kDa protein (CLIPR-59) as a novel adaptor protein for TNFR1. Experimental reduction of CLIPR-59 levels prevented induction of apoptosis and activation of caspases in the context of TNF-Ξ± signaling. CLIPR-59 binds TNFR1 but dissociates in response to TNF-Ξ± stimulation. However, CLIPR-59 is also involved in and needed for the formation of Complex-II. Moreover, CLIPR-59 regulates TNF-Ξ±-induced ubiquitination of receptor-interacting protein 1 (RIP1) by its association with CYLD, a de-ubiquitinating enzyme. These findings suggest that CLIPR-59 modulates ubiquitination of RIP1, resulting in the formation of Complex-II and thus promoting Caspase-8 activation to induce apoptosis by TNF-Ξ±
    • …
    corecore