21 research outputs found

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Life-threatening infections in children in Europe (the EUCLIDS Project): a prospective cohort study

    Get PDF
    Background: Sepsis and severe focal infections represent a substantial disease burden in children admitted to hospital. We aimed to understand the burden of disease and outcomes in children with life-threatening bacterial infections in Europe. Methods: The European Union Childhood Life-threatening Infectious Disease Study (EUCLIDS) was a prospective, multicentre, cohort study done in six countries in Europe. Patients aged 1 month to 18 years with sepsis (or suspected sepsis) or severe focal infections, admitted to 98 participating hospitals in the UK, Austria, Germany, Lithuania, Spain, and the Netherlands were prospectively recruited between July 1, 2012, and Dec 31, 2015. To assess disease burden and outcomes, we collected demographic and clinical data using a secured web-based platform and obtained microbiological data using locally available clinical diagnostic procedures. Findings: 2844 patients were recruited and included in the analysis. 1512 (53·2%) of 2841 patients were male and median age was 39·1 months (IQR 12·4–93·9). 1229 (43·2%) patients had sepsis and 1615 (56·8%) had severe focal infections. Patients diagnosed with sepsis had a median age of 27·6 months (IQR 9·0–80·2), whereas those diagnosed with severe focal infections had a median age of 46·5 months (15·8–100·4; p<0·0001). Of 2844 patients in the entire cohort, the main clinical syndromes were pneumonia (511 [18·0%] patients), CNS infection (469 [16·5%]), and skin and soft tissue infection (247 [8·7%]). The causal microorganism was identified in 1359 (47·8%) children, with the most prevalent ones being Neisseria meningitidis (in 259 [9·1%] patients), followed by Staphylococcus aureus (in 222 [7·8%]), Streptococcus pneumoniae (in 219 [7·7%]), and group A streptococcus (in 162 [5·7%]). 1070 (37·6%) patients required admission to a paediatric intensive care unit. Of 2469 patients with outcome data, 57 (2·2%) deaths occurred: seven were in patients with severe focal infections and 50 in those with sepsis. Interpretation: Mortality in children admitted to hospital for sepsis or severe focal infections is low in Europe. The disease burden is mainly in children younger than 5 years and is largely due to vaccine-preventable meningococcal and pneumococcal infections. Despite the availability and application of clinical procedures for microbiological diagnosis, the causative organism remained unidentified in approximately 50% of patients

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study

    Get PDF
    BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis

    No full text
    Lamin Saidykhan,1 Md Zuki Bin Abu Bakar,2 Yaya Rukayadi,1,3 Aminu Umar Kura,4 Saiful Yazan Latifah5 1Microbiology Unit, Laboratory of Natural Products, Institute of Bioscience, 2Laboratory of Anatomy and Histology, Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, 3Department of Food Science, Faculty of Food Science and Technology, 4Vaccine and Immunotherapeutics Laboratory Unit, Institute of Bioscience, 5Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia Abstract: A local antibiotic delivery system (LADS) with biodegradable drug vehicles is recognized as the most effective therapeutic approach for the treatment of osteomyelitis. However, the design of a biodegradable LADS with high therapeutic efficacy is too costly and demanding. In this research, a low-cost, facile method was used to design vancomycin-loaded aragonite nanoparticles (VANPs) with the aim of understanding its potency in developing a nanoantibiotic bone implant for the treatment of osteomyelitis. The aragonite nanoparticles (ANPs) were synthesized from cockle shells by a hydrothermal approach using a zwitterionic surfactant. VANPs were prepared using antibiotic ratios of several nanoparticles, and the formulation (1:4) with the highest drug-loading efficiency (54.05%) was used for physicochemical, in vitro drug release, and biological evaluation. Physiochemical characterization of VANP was performed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, and Zetasizer. No significant differences were observed between VANP and ANP in terms of size and morphology as both samples were cubic shaped with sizes of approximately 35&nbsp;nm. The Fourier transform infrared spectroscopy of VANP indicated a weak noncovalent interaction between ANP and vancomycin, while the zeta potential values were slightly increased from -19.4&plusmn;3.3 to -21.2&plusmn;5.7&nbsp;mV after vancomycin loading. VANP displayed 120&nbsp;hours (5&nbsp;days) release profile of vancomycin that exhibited high antibacterial effect against methicillin-resistant Staphylococcus aureus ATCC 29213. The cell proliferation assay showed 80% cell viability of human fetal osteoblast cell line 1.19 treated with the highest concentration of VANP (250&nbsp;&micro;g/mL), indicating good biocompatibility of VANP. In summary, VANP is a potential formulation for the development of an LADS against osteomyelitis with optimal antibacterial efficacy, good bone resorbability, and biocompatibility. Keywords: cockle shell-derived nanoparticles, nanoantibiotics, in vitro drug release, antibacterial activity, biocompatibilit

    It takes a village: Caregiver diversity and language contingency in the UK and rural Gambia.

    No full text
    INTRODUCTION: There is substantial diversity within and between contexts globally in caregiving practices and family composition, which may have implications for the early interaction's infants engage in. We draw on data from the [blinded] project, which longitudinally examined infants in the UK and in rural Gambia, West Africa. In The Gambia, households are commonly characterized by multigenerational, frequently polygamous family structures, which, in part, is reflected in the diversity of caregivers a child spends time with. In this paper, we aim to 1) evaluate and validate the Language Environment Analysis (LENA) for use in the Mandinka speaking families in The Gambia, 2) examine the nature (i.e., prevalence of turn taking) and amount (i.e., adult and child vocalizations) of conversation that infants are exposed to from 12 to 24 months of age and 3) investigate the link between caregiver diversity and child language outcomes, examining the mediating role of contingent turn taking. METHOD: We obtained naturalistic seven-hour-long LENA recordings at 12, 18 and 24 months of age from a cohort of N = 204 infants from Mandinka speaking households in The Gambia and N = 61 infants in the UK. We examined developmental changes and site differences in LENA counts of adult word counts (AWC), contingent turn taking (CTT) and child vocalizations (CVC). In the larger and more heterogenous Gambian sample, we also investigated caregiver predictors of turn taking frequency. We hereby examined the number of caregivers present over the recording day and the consistency of caregivers across two subsequent days per age point. We controlled for children's cognitive development via the Mullen Scales of Early Learning (MSEL). RESULTS: Our LENA validation showed high internal consistency between the human coders and automated LENA outputs (Cronbach's alpha's all >.8). All LENA counts were higher in the UK compared to the Gambian cohort. In The Gambia, controlling for overall neurodevelopment via the MSEL, CTT at 12 and 18 months predicted CVC at 18 and 24 months. Caregiver consistency was associated with CTT counts at 18 and 24 months. The number of caregivers and CTT counts showed an inverted u-shape relationship at 18 and 24 months, with an intermediate number of caregivers being associated with the highest CTT frequencies. Mediation analyses showed a partial mediation by number of caregivers and CTT and 24-month CVC. DISCUSSION: The LENA provided reliable estimates for the Mandinka language in the home recording context. We showed that turn taking is associated with subsequent child vocalizations and explored contextual caregiving factors contributing to turn taking in the Gambian cohort
    corecore