10 research outputs found

    Adsorption of Water on Simulated Moon Dust Samples

    Get PDF
    A lunar regolith simulant dust sample (JSC-1a) supported on a silica wafer (SiO2/Si(111)) has been characterized by scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), and Auger electron spectroscopy (AES). The adsorption kinetics of water has been studied primarily by thermal desorption spectroscopy (TDS) and also by collecting isothermal adsorption transients. The support has been characterized by water TDS. JSC-1a consists mostly of aluminosilicate glass and other minerals containing Fe, Na, Ca, and Mg. The particle sizes span the range from a few microns up to 100 microns. At small exposures, H2O TDS is characterized by broad (100 to 450 K) structures; at large exposures distinct TDS peaks emerge that are assigned to amorphous solid water (145 K) and crystalline ice (165 K). Water dissociates on JSC-1a at small exposures but not on the bare silica support. It appears that rather porous condensed ice layers form at large exposures. At thermal impact energies, the initial adsorption probability amounts to 0.92+/-0.05

    Adsorption of Water on JSC-1A Lunar Simulant Samples

    Get PDF
    Remote sensing probes sent to the moon in the 1990s indicated that water may exist in areas such as the bottoms of deep, permanently shadowed craters at the lunar poles, buried under regolith. Water is of paramount importance for any lunar exploration and colonization project which would require self-sustainable systems. Therefore, investigating the interaction of water with lunar regolith is pertinent to future exploration. The lunar environment can be approximated in ultra-high vacuum systems such as those used in thermal desorption spectroscopy (TDS). Questions about water dissociation, surface wetting, degree of crystallization, details of water-ice transitions, and cluster formation kinetics can be addressed by TDS. Lunar regolith specimens collected during the Apollo missions are still available though precious, so testing with simulant is required before applying to use lunar regolith samples. Hence, we used for these studies JSC-1a, mostly an aluminosilicate glass and basaltic material containing substantial amounts of plagioclase, some olivine and traces of other minerals. Objectives of this project include: 1) Manufacturing samples using as little raw material as possible, allowing the use of surface chemistry and kinetics tools to determine the feasibility of parallel studies on regolith, and 2) Characterizing the adsorption kinetics of water on the regolith simulant. This has implications for the probability of finding water on the moon and, if present, for recovery techniques. For condensed water films, complex TDS data were obtained containing multiple features, which are related to subtle rearrangements of the water adlayer. Results from JSC-1a TDS studies indicate: 1) Water dissociation on JSC-1a at low exposures, with features detected at temperatures as high as 450 K and 2) The formation of 3D water clusters and a rather porous condensed water film. It appears plausible that the sub- m sized particles act as nucleation centers

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial

    Mitigating arsenic toxicity through dietary selenium and biofortified lentils

    No full text
    Bibliography: p. 116-144A few pages are in colour.Includes copy of animal protocol approval and copyright permission. Original copies with original Partial Copyright Licence.Arsenic (As) toxicity causes senous health problems in humans. Selenium (Se), an important micronutrient and antioxidant acts as an antagonist of arsenic (As). Selenium is seriously deficient in Southeast Asian soils, but has good levels in Saskatchewan (SK) soils. We evaluated two kinds of Se manipulated diets in counteracting As toxicity in rats evident through liver damage (peroxidative stress), immunotoxicity (antibody response), depleted glutathione levels, as well as increased As residues in tissue (liver, kidney, whole blood) and excreta (urine, feces). For both studies, higher Se diets (rodent chow and lentil-based feed) resulted in higher glutathione (GSH), lower lipid peroxidative damage, recovered antibody response, higher fecal As excretion and lower renal As residues. These findings support the hypothesis that As toxicity is decreased through naturally high Se lentil diets as well as Se fortified rodent chow by reducing the As induced damage and eliminating As from the body

    Animal Social Network Repository

    No full text
    Archived repository for publication. For the most recent version, please visit: https://bansallab.github.io/asnr

    New Xanthone from the roots of <i>Swertia cordata</i> (G. Don) Clarke

    No full text
    <p>The chloroform extract of <i>Swertia cordata</i> (G. Don) roots was subjected to column chromatography, afforded two (one new and one known) xanthones. Both the compounds were isolated for the first time from <i>S. cordata</i>. The structures of the isolated compounds were established on the basis of melting point,1D (<sup>1</sup>H NMR & <sup>13</sup>C NMR) and 2D (<sup>1</sup>H <sup>1</sup>H COSY, HSQC & HMBC) NMR spectroscopy, in addition to high-resolution mass spectrometry.</p

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    No full text
    BackgroundTranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding.MethodsWe did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124.FindingsBetween July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98).InterpretationWe found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial.</div
    corecore