11 research outputs found

    BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY THE STRUCTURES OF ODORANT MOLECULES AND WEAKLY BOUND COMPLEXES IN THE GAS PHASE

    Get PDF
    The rotational spectrum of textit{trans}-cinnamaldehyde ((2E)-3-phenylprop-2-enal) has been obtained with chirped-pulse microwave spectroscopy in the frequency range of 2 - 8.5 GHz. The odorant molecule is the essential component in cinnamon oil and causes the characteristic smell. In the measured high-resolution spectrum, we were able to assign the rotational spectra of two conformers of textit{trans}-cinnamaldehyde as well as all singly 13^{13}C-substituted species of the lowest-energy conformer in natural abundance. Two different methods were used to determine the structure from the rotational constants, which will be compared within this contribution. In addition, the current progress of studying ether-alcohol complexes, aiming at an improved understanding of the interplay between hydrogen bonding and dispersion interaction, will be reported. Here, a special focus is placed on the complexes of diphenylether with small aliphatic alcohols

    Conformational Analysis Of Ibuprofen Using Broadband Microwave Spectroscopy

    Get PDF
    \begin{wrapfigure}{r}{0pt} \includegraphics[trim = 55mm 134mm 70mm 117mm, clip, width=6.15cm]{Ibuprofen.eps} \end{wrapfigure} The broadband rotational spectrum of ibuprofen ((RS)-2-(4-isobutylphenyl)-propanoic acid), a well-known drug, will be presented. As it is used to relieve pain, reduce fever, and inhibit inflammation, the knowledge of its biological activity is very interesting. Insights to the conformational flexibility of this drug might lead to a better understanding of the class of non-steroidal anti-inflammatory drugs that ibuprofen belongs to.\\ The spectrum was recorded with our broadband chirped-pulse Fourier transform microwave spectrometer in the frequency range of 2.0 - 8.3~GHz. With the obtained results, we are able to identify several conformers of ibuprofen and to determine their rotational constants. Density functional theory calculations were performed and used to support the conformational assignments. Fragments of ibuprofen could be also identified in the spectrum, which can be explained by thermal decomposition during the heating process for vaporizing it. The analysis of this fragmentation process as a function of temperature might provide us with some interesting insights into its mechanism

    The low-barrier methyl internal rotation in the rotational spectrum of 3-methylphenylacetylene

    No full text
    The rotational spectrum of 3-methylphenylacetylene has been recorded in the 2–8 GHz region using a chirped-pulse broadband microwave spectrometer. Torsion-rotation transition splittings are observed from a tunneling motion along the methyl internal rotation axis. The XIAM program was used to characterize the splitting, yielding an internal rotation barrier, V3V_3, of 11.4259722±\pm0.00002 cm−1^{−1}. While this barrier is considered low, fits of A-state only transitions yield a quality, rigid-rotor fit, and are compared to the combined A/EA/E fits. Computationally predicted barriers are estimated between 14.4 and 28.9 cm−1^{−1}

    Rotational Signatures of Dispersive Stacking in the Formation of Aromatic Dimers

    No full text
    The aggregation of aromatic species is dictated by inter‐ and intramolecular forces. Not only is characterizing these forces in aromatic growth important for understanding grain formation in the interstellar medium, but it is also imperative to comprehend biological functions. We report a combined rotational spectroscopic and quantum‐chemical study on three homo‐dimers, comprising of diphenyl ether, dibenzofuran, and fluorene, to analyze the influence of structural flexibility and the presence of heteroatoms on dimer formation. The structural information obtained shows clear similarities between the dimers, despite their qualitatively different molecular interactions. All dimers are dominated by dispersion interactions, but the dibenzofuran dimer is also influenced by repulsion between the free electron pairs of the oxygen atoms and the π‐clouds. This study lays the groundwork for understanding the first steps of molecular aggregation in systems with aromatic residues

    Unexpected discovery of estrone in the rotational spectrum of estradiol: a systematic investigation of a CP-FTMW spectrum

    No full text
    We report the reinvestigation of the high-resolution rotational spectrum of estradiol. After removing the known spectral lines corresponding to three conformers of estradiol identified in the gas phase before, a large number of spectral lines remained unassigned in the spectrum. The observation of remaining lines is a common feature in spectra obtained by broadband rotational spectroscopy. In our reinvestigation, the detection of certain patterns resulted in two new sets of experimental rotational constants. Here we describe a systematic analysis, which together with quantum-chemical computations culminated in the assignment of two estrone conformers, namely exhibiting the trans- and the cis-arrangement of the hydroxy group attached to the rigid steroid backbone. Estrone and estradiol only differ in two atomic mass units, and they are known to interconvert under certain conditions, which might also have been the case in our experiments due to the heating temperature of 195°C. The results illustrate the potential of high-resolution rotational spectroscopy to discern between structurally related molecules and to provide their gas-phase structures without information beforehand exploiting the benefit of having remaining unassigned rotational transitions in the spectrum

    Mechanism of MRX inhibition by Rif2 at telomeres

    No full text
    International audienceSpecific proteins present at telomeres ensure chromosome end stability, in large part through unknown mechanisms. In this work, we address how the Saccharomyces cerevisiae ORC-related Rif2 protein protects telomere. We show that the small N-terminal Rif2 BAT motif (Blocks Addition of Telomeres) previously known to limit telomere elongation and Tel1 activity is also sufficient to block NHEJ and 5' end resection. The BAT motif inhibits the ability of the Mre11-Rad50-Xrs2 complex (MRX) to capture DNA ends. It acts through a direct contact with Rad50 ATP-binding Head domains. Through genetic approaches guided by structural predictions, we identify residues at the surface of Rad50 that are essential for the interaction with Rif2 and its inhibition. Finally, a docking model predicts how BAT binding could specifically destabilise the DNA-bound state of the MRX complex. From these results, we propose that when an MRX complex approaches a telomere, the Rif2 BAT motif binds MRX Head in its ATP-bound resting state. This antagonises MRX transition to its DNA-bound state, and favours a rapid return to the ATP-bound state. Unable to stably capture the telomere end, the MRX complex cannot proceed with the subsequent steps of NHEJ, Tel1-activation and 5' resection

    Avelumab Versus Docetaxel in Patients With Platinum-Treated Advanced NSCLC: 2-Year Follow-Up From the JAVELIN Lung 200 Phase 3 Trial

    No full text
    International audienceAbstract Specific proteins present at telomeres ensure chromosome end stability, in large part through unknown mechanisms. In this work, we address how the Saccharomyces cerevisiae ORC-related Rif2 protein protects telomere. We show that the small N-terminal Rif2 BAT motif ( B locks A ddition of T elomeres) previously known to limit telomere elongation and Tel1 activity is also sufficient to block NHEJ and 5’ end resection. The BAT motif inhibits the ability of the Mre11-Rad50-Xrs2 complex (MRX) to capture DNA ends. It acts through a direct contact with Rad50 ATP-binding Head domains. Through genetic approaches guided by structural predictions, we identify residues at the surface of Rad50 that are essential for the interaction with Rif2 and its inhibition. Finally, a docking model predicts how BAT binding could specifically destabilise the DNA-bound state of the MRX complex. From these results, we propose that when an MRX complex approaches a telomere, the Rif2 BAT motif binds MRX Head in its ATP-bound resting state. This antagonises MRX transition to its DNA-bound state, and favours a rapid return to the ATP-bound state. Unable to stably capture the telomere end, the MRX complex cannot proceed with the subsequent steps of NHEJ, Tel1-activation and 5’ resection

    Aromatic embedding wins over classical hydrogen bonding – a multi-spectroscopic approach for the diphenyl ether–methanol complex

    No full text
    Dispersion interactions are omnipresent in intermolecular interactions, but their respective contributions are difficult to predict. Aromatic ethers offer competing docking sites for alcohols: the ether oxygen as a well known hydrogen bond acceptor, but also the aromatic π system. The interaction with two aromatic moieties in diphenyl ether can tip the balance towards π binding. We use a multi-spectroscopic approach to study the molecular recognition, the structure and internal dynamics of the diphenyl ether–methanol complex, employing infrared, infrared-ultraviolet and microwave spectroscopy. We find that the conformer with the hydroxy group of the alcohol binding to one aromatic π cloud and being coordinated by an aromatic C–H bond of the other phenyl group is preferred. Depending on the expansion conditions in the supersonic jet, we observe a second conformer, which exhibits a hydrogen bond to the ether oxygen and is higher in energy
    corecore