3,006 research outputs found

    Camurati-Engelmann disease

    Get PDF

    Resonant CP Violation in Higgs Radiation at e^+e^- Linear Collider

    Full text link
    We study resonant CP violation in the Higgsstrahlung process e^+e^- -> H_{1,2,3} (Z -> e^+e^-, \mu^+\mu^-) and subsequent decays H_{1,2,3} -> b \bar{b}, \tau^-\tau^+, in the MSSM with Higgs-sector CP violation induced by radiative corrections. At a high-energy e^+e^- linear collider, the recoil-mass method enables one to determine the invariant mass of a fermion pair produced by Higgs decays with a precision as good as 1 GeV. Assuming an integrated luminosity of 100/fb, we show that the production lineshape of a coupled system of neutral Higgs bosons decaying into b\bar{b} quarks is sensitive to the CP-violating parameters. When the Higgs bosons decay into \tau^-\tau^+, two CP asymmetries can be defined using the longitudinal and transverse polarizations of the tau leptons. Taking into account the constraints from electric dipole moments, we find that these CP asymmetries can be as large as 80 %, in a tri-mixing scenario where all three neutral Higgs states of the MSSM are nearly degenerate and mix significantly.Comment: 22 pages, 8 figures, to appear in Phys. Rev.

    A Search for Extraplanar Dust in Nearby Edge-On Spirals

    Get PDF
    We present high resolution BV images of 12 edge-on spiral galaxies observed with the WIYN 3.5-m telescope. These images were obtained to search for extraplanar (|z| > 0.4 kpc) absorbing dust structures similar to those previously found in NGC 891 (Howk & Savage 1997). Our imaged galaxies include a sample of seven massive L_*-like spiral galaxies within D<25 Mpc that have inclinations i > 87 deg from the plane of the sky. We find that five of these seven systems show extraplanar dust, visible as highly-structured absorbing clouds against the background stellar light of the galaxies. The more prominent structures are estimated to have associated gas masses >10^5 M_sun; the implied potential energies are > 10^(52) ergs. All of the galaxies in our sample that show detectable halpha emission at large z also show extraplanar dust structures. None of those galaxies for which extraplanar halpha searches were negative show evidence for extensive high-z dust. The existence of extraplanar dust is a common property of massive spiral galaxies. We discuss several mechanisms for shaping the observed dust features, emphasizing the possibility that these dusty clouds represent the dense phase of a multiphase medium at high-z in spiral galaxies. The correlation between high-z dust and extraplanar Halpha emission may simply suggest that both trace the high-z interstellar medium in its various forms (or phases), the existence of which may ultimately be driven by vigorous star formation in the underlying disk. (Abstract abridged)Comment: 26 pages; 15 jpeg figures. To appear in The Astronomical Journal, May 1999. Gzipped tar files of high-resolution figures in postscript and jpeg formats are available at http://www.astro.wisc.edu/~howk/Papers/papers.html#surve

    Lepton Number Violation from Colored States at the LHC

    Full text link
    The possibility to search for lepton number violating signals at the Large Hadron Collider (LHC) in the colored seesaw scenario is investigated. In this context the fields that generate neutrino masses at the one-loop level are scalar and Majorana fermionic color-octets of SU(3). Due to the QCD strong interaction these states may be produced at the LHC with a favorable rate. We study the production mechanisms and decays relevant to search for lepton number violation signals in the channels with same-sign dileptons. In the simplest case when the two fermionic color-octets are degenerate in mass, one could use their decays to distinguish between the neutrino spectra. We find that for fermionic octets with mass up to about 1 TeV the number of same-sign dilepton events is larger than the standard model background indicating a promising signal for new physics.Comment: minor corrections, added reference

    POISSON project - II - A multi-wavelength spectroscopic and photometric survey of young protostars in L 1641

    Full text link
    Characterising stellar and circumstellar properties of embedded young stellar objects (YSOs) is mandatory for understanding the early stages of the stellar evolution. This task requires the combination of both spectroscopy and photometry, covering the widest possible wavelength range, to disentangle the various protostellar components and activities. As part of the POISSON project, we present a multi-wavelength spectroscopic and photometric investigation of embedded YSOs in L1641, aimed to derive the stellar parameters and evolutionary stages and to infer their accretion properties. Our database includes low-resolution optical-IR spectra from the NTT and Spitzer (0.6-40 um) and photometric data covering a spectral range from 0.4 to 1100 um, which allow us to construct the YSOs spectral energy distributions (SEDs) and to infer the main stellar parameters. The SED analysis allows us to group our 27 YSOs into nine Class I, eleven Flat, and seven Class II objects. However, on the basis of the derived stellar properties, only six Class I YSOs have an age of ~10^5 yr, while the others are older 5x10^5-10^6 yr), and, among the Flat sources, three out of eleven are more evolved objects (5x10^6-10^7 yr), indicating that geometrical effects can significantly modify the SED shapes. Inferred mass accretion rates (Macc) show a wide range of values (3.6x10^-9 to 1.2x10^-5 M_sun yr^-1), which reflects the age spread observed in our sample. Average values of mass accretion rates, extinction, and spectral indices decrease with the YSO class. The youngest YSOs have the highest Macc, whereas the oldest YSOs do not show any detectable jet activity in either images and spectra. We also observe a clear correlation among the YSO Macc, M*, and age, consistent with mass accretion evolution in viscous disc models.Comment: 61 pages, 16 figures; A&A in pres

    Neutrino Masses, Mixing and New Physics Effects

    Full text link
    We introduce a parametrization of the effects of radiative corrections from new physics on the charged lepton and neutrino mass matrices, studying how several relevant quantities describing the pattern of neutrino masses and mixing are affected by these corrections. We find that the ratio omega = sin theta / tan theta_atm is remarkably stable, even when relatively large corrections are added to the original mass matrices. It is also found that if the lightest neutrino has a mass around 0.3 eV, the pattern of masses and mixings is considerably more stable under perturbations than for a lighter or heavier spectrum. We explore the consequences of perturbations on some flavor relations given in the literature. In addition, for a quasi-degenerate neutrino spectrum it is shown that: (i) starting from a bi-maximal mixing scenario, the corrections to the mass matrices keep tan theta_atm very close to unity while they can lower tan theta_sol to its measured value; (ii) beginning from a scenario with a vanishing Dirac phase, corrections can induce a Dirac phase large enough to yield CP violation observable in neutrino oscillations.Comment: 14 pages, 21 figures. Uses RevTeX4. Added several comments and references. Final version to appear in PR

    Leptonic CP Violation and Neutrino Mass Models

    Full text link
    We discuss leptonic mixing and CP violation at low and high energies, emphasizing possible connections between leptogenesis and CP violation at low energies, in the context of lepton flavour models. Furthermore we analyse weak basis invariants relevant for leptogenesis and for CP violation at low energies. These invariants have the advantage of providing a simple test of the CP properties of any lepton flavour model.Comment: 26 pages, no figures, submitted to the Focus Issue on `Neutrino Physics` edited by F. Halzen, M. Lindner and A. Suzuki, to be published in New Journal of Physic

    How precisely can we reduce the three-flavor neutrino oscillation to the two-flavor one only from (\delta m^2_{12})/(\delta m^2_{13}) <~ 1/15 ?

    Get PDF
    We derive the reduction formula, which expresses the survival rate for the three-flavor neutrino oscillation by the two-flavor one, to the next-to-leading order in case there is one resonance due to the matter effect. We numerically find that the next-to-leading reduction formula is extremely accurate and the improvement is relevant for the precision test of solar neutrino oscillation and the indirect measurment of CP violation in the leptonic sector. We also derive the reduction formula, which is slightly different from that previously obtained, in case there are two resonances. We numerically verify that this reduction formula is quite accurate and is valid for wider parameter region than the previously obtained ones are.Comment: 28pages, 8figures, revtex4. to appear in PR
    corecore