321 research outputs found
Coral assemblages at higher latitudes favour short-term potential over long-term performance
The persistent exposure of coral assemblages to more variable abiotic regimes is assumed to augment their resilience to future climatic variability. Yet, while the determinants of coral population resilience across species remain unknown, we are unable to predict the winners and losers across reef ecosystems exposed to increasingly variable conditions. Using annual surveys of 3171 coral individuals across Australia and Japan (2016-2019), we explore spatial variation across the short- and long-term dynamics of competitive, stress-tolerant, and weedy assemblages to evaluate how abiotic variability mediates the structural composition of coral assemblages. We illustrate how, by promoting short-term potential over long-term performance, coral assemblages can reduce their vulnerability to stochastic environments. However, compared to stress-tolerant, and weedy assemblages, competitive coral taxa display a reduced capacity for elevating their short-term potential. Accordingly, future climatic shifts threaten the structural complexity of coral assemblages in variable environments, emulating the degradation expected across global tropical reef
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Strain-Dependent Differences in Bone Development, Myeloid Hyperplasia, Morbidity and Mortality in Ptpn2-Deficient Mice
Single nucleotide polymorphisms in the gene encoding the protein tyrosine phosphatase TCPTP (encoded by PTPN2) have been linked with the development of autoimmunity. Here we have used Cre/LoxP recombination to generate Ptpn2ex2−/ex2− mice with a global deficiency in TCPTP on a C57BL/6 background and compared the phenotype of these mice to Ptpn2−/− mice (BALB/c-129SJ) generated previously by homologous recombination and backcrossed onto the BALB/c background. Ptpn2ex2−/ex2− mice exhibited growth retardation and a median survival of 32 days, as compared to 21 days for Ptpn2−/− (BALB/c) mice, but the overt signs of morbidity (hunched posture, piloerection, decreased mobility and diarrhoea) evident in Ptpn2−/− (BALB/c) mice were not detected in Ptpn2ex2−/ex2− mice. At 14 days of age, bone development was delayed in Ptpn2−/− (BALB/c) mice. This was associated with increased trabecular bone mass and decreased bone remodeling, a phenotype that was not evident in Ptpn2ex2−/ex2− mice. Ptpn2ex2−/ex2− mice had defects in erythropoiesis and B cell development as evident in Ptpn2−/− (BALB/c) mice, but not splenomegaly and did not exhibit an accumulation of myeloid cells in the spleen as seen in Ptpn2−/− (BALB/c) mice. Moreover, thymic atrophy, another feature of Ptpn2−/− (BALB/c) mice, was delayed in Ptpn2ex2−/ex2− mice and preceded by an increase in thymocyte positive selection and a concomitant increase in lymph node T cells. Backcrossing Ptpn2−/− (BALB/c) mice onto the C57BL/6 background largely recapitulated the phenotype of Ptpn2ex2−/ex2− mice. Taken together these results reaffirm TCPTP's important role in lymphocyte development and indicate that the effects on morbidity, mortality, bone development and the myeloid compartment are strain-dependent
Is time-variant information stickiness state-dependent?
This paper estimates information stickiness with regard to inflation expectations in the United States and the Eurozone for the 1981/06–2015/12 and 1998/Q4–2015/Q2 periods, respectively, and further investigates whether such information stickiness is state- dependent. Based on a bootstrap sub-sample rolling-window estimation, we find that information stickiness varies over time, which contradicts the strict time dependency implied under sticky-information theory. We provide evidence that information stickiness depends on inflation volatility, which indicates that information stickiness is state-dependent and that it has a time trend. Using a threshold model, we estimate structural changes in the state- dependence and time-trend of information stickiness. The results show that information stickiness has been more dependent on inflation volatility and has had a higher time-trend in both regions following the 2008 financial crisis.info:eu-repo/semantics/publishedVersio
The methodology for developing a prospective meta-analysis in the family planning community
<p>Abstract</p> <p>Background</p> <p>Prospective meta-analysis (PMA) is a collaborative research design in which individual sites perform randomized controlled trials (RCTs) and pool the data for meta-analysis. Members of the PMA collaboration agree upon specific research interventions and outcome measures, ideally before initiation but at least prior to any individual trial publishing results. This allows for uniform reporting of primary and secondary outcomes. With this approach, heterogeneity among trials contributing data for the final meta-analysis is minimized while each site maintains the freedom to design a specific trial. This paper describes the process of creating a PMA collaboration to evaluate the impact of misoprostol on ease of intrauterine device (IUD) insertion in nulliparous women.</p> <p>Methods</p> <p>After the principal investigator developed a preliminary PMA protocol, he identified potential collaborating investigators at other sites. One site already had a trial underway and another site was in the planning stages of a trial meeting PMA requirements. Investigators at six sites joined the PMA collaborative. Each site committed to enroll subjects to meet a pre-determined total sample size. A final common research plan and site responsibilities were developed and agreed upon through email and face-to-face meetings. Each site committed to contribute individual patient data to the PMA collaboration, and these data will be analyzed and prepared as a multi-site publication. Individual sites retain the ability to analyze and publish their site's independent findings.</p> <p>Results</p> <p>All six sites have obtained Institutional Review Board approval and each has obtained individual funding to meet the needs of that site's study. Sites have shared resources including study protocols and consents to decrease costs and improve study flow. This PMA protocol is registered with the Cochrane Collaboration and data will be analyzed according to Cochrane standards for meta-analysis.</p> <p>Conclusions</p> <p>PMA is a novel research method that improves meta-analysis by including several study sites, establishing uniform reporting of specific outcomes, and yet allowing some independence on the part of individual sites with respect to the conduct of research. The inclusion of several sites increases statistical power to address important clinical questions. Compared to multi-center trials, PMA methodology encourages collaboration, aids in the development of new investigators, decreases study costs, and decreases time to publication.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00613366">NCT00613366</a>, <a href="http://www.clinicaltrials.gov/ct2/show/NCT00886834">NCT00886834</a>, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01001897">NCT01001897</a>, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01147497">NCT01147497</a> and <a href="http://www.clinicaltrials.gov/ct2/show/NCT01307111">NCT01307111</a></p
Multi-Patterned Dynamics of Mitochondrial Fission and Fusion in a Living Cell
Mitochondria are highly-dynamic organelles, but it is challenging to monitor quantitatively their dynamics in a living cell. Here we developed a novel approach to determine the global occurrence of mitochondrial fission and fusion events in living human epithelial cells (Hela) and mouse embryonic fibroblast cells (MEF). Distinct patterns of sequential events including fusion followed by fission (Fu-Fi), the so-called “kiss and run” model previously described, fission followed by fusion (Fi-Fu), fusion followed by fusion (Fu-Fu), and fission followed by fission (Fi-Fi) were observed concurrently. The paired events appeared in high frequencies with short lifetimes and large sizes of individual mitochondria, as compared to those for unpaired events. The high frequencies of paired events were found to be biologically significant. The presence of membrane uncoupler CCCP enhanced the frequency of paired events (from both Fu-Fi and Fi-Fu patterns) with a reduced mitochondrial size. Knock-out of mitofusin protein Mfn1 increased the frequency of fission with increased lifetime of unpaired events whereas deletion of both Mfn1 and Mfn2 resulted in an instable dynamics. These results indicated that the paired events were dominant but unpaired events were not negligible, which provided a new insight into mitochondrial dynamics. In addition to kiss and run model of action, our data suggest that, from a global visualization over an entire cell, multiple patterns of action appeared in mitochondrial fusion and fission
Extracellular Heat Shock Protein (Hsp)70 and Hsp90α Assist in Matrix Metalloproteinase-2 Activation and Breast Cancer Cell Migration and Invasion
Breast cancer is second only to lung cancer in cancer-related deaths in women, and the majority of these deaths are caused by metastases. Obtaining a better understanding of migration and invasion, two early steps in metastasis, is critical for the development of treatments that inhibit breast cancer metastasis. In a functional proteomic screen for proteins required for invasion, extracellular heat shock protein 90 alpha (Hsp90α) was identified and shown to activate matrix metalloproteinase 2 (MMP-2). The mechanism of MMP-2 activation by Hsp90α is unknown. Intracellular Hsp90α commonly functions with a complex of co-chaperones, leading to our hypothesis that Hsp90α functions similarly outside of the cell. In this study, we show that a complex of co-chaperones outside of breast cancer cells assists Hsp90α mediated activation of MMP-2. We demonstrate that the co-chaperones Hsp70, Hop, Hsp40, and p23 are present outside of breast cancer cells and co-immunoprecipitate with Hsp90α in vitro and in breast cancer conditioned media. These co-chaperones also increase the association of Hsp90α and MMP-2 in vitro. This co-chaperone complex enhances Hsp90α-mediated activation of MMP-2 in vitro, while inhibition of Hsp70 in conditioned media reduces this activation and decreases cancer cell migration and invasion. Together, these findings support a model in which MMP-2 activation by an extracellular co-chaperone complex mediated by Hsp90α increases breast cancer cell migration and invasion. Our studies provide insight into a novel pathway for MMP-2 activation and suggest Hsp70 as an additional extracellular target for anti-metastatic drug development
Satellite-based terrestrial production efficiency modeling
Production efficiency models (PEMs) are based on the theory of light use efficiency (LUE) which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP) monitoring. The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and NPP modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research
p53 Interaction with JMJD3 Results in Its Nuclear Distribution during Mouse Neural Stem Cell Differentiation
Conserved elements of apoptosis are also integral components of cellular differentiation. In this regard, p53 is involved in neurogenesis, being required for neurite outgrowth in primary neurons and for axonal regeneration in mice. Interestingly, demethylases regulate p53 activity and its interaction with co-activators by acting on non-histone proteins. In addition, the histone H3 lysine 27-specific demethylase JMJD3 induces ARF expression, thereby stabilizing p53 in mouse embryonic fibroblasts. We hypothesized that p53 interacts with key regulators of neurogenesis to redirect stem cells to differentiation, as an alternative to cell death. Specifically, we investigated the potential cross-talk between p53 and JMJD3 during mouse neural stem cell (NSC) differentiation. Our results demonstrated that JMJD3 mRNA and protein levels were increased early in mouse NSC differentiation, when JMJD3 activity was readily detected. Importantly, modulation of JMJD3 in NSCs resulted in changes of total p53 protein, coincident with increased ARF mRNA and protein expression. ChIP analysis revealed that JMJD3 was present at the promoter and exon 1 regions of ARF during neural differentiation, although without changes in H3K27me3. Immunoprecipitation assays demonstrated a direct interaction between p53 and JMJD3, independent of the C-terminal region of JMJD3, and modulation of p53 methylation by JMJD3-demethylase activity. Finally, transfection of mutant JMJD3 showed that the demethylase activity of JMJD3 was crucial in regulating p53 cellular distribution and function. In conclusion, JMJD3 induces p53 stabilization in mouse NSCs through ARF-dependent mechanisms, directly interacts with p53 and, importantly, causes nuclear accumulation of p53. This suggests that JMJD3 and p53 act in a common pathway during neurogenesis
- …