30 research outputs found

    Extension of Raw Cow Milk Shelf Life by Microplasma Discharge

    Get PDF
    Cow's milk, the universal nutrient, is being stored and supplied, which seeks proper preservation. The prevalent milk preservation procedure of refrigeration, is effective only for two days, and after which, it starts to contaminate due to the growth of various milk-laden bacteria. This bacterial overload has to be inactivated properly to increase its shelf life, and is been achieved effectively using microplasma, a single-step, cost-effective and chemical-free process. Raw milk was treated for 5, 10, and 13 seconds in microplasma discharge. After 13 seconds of microplasma treatment, E. Coli, Pseudomonas, and S. Aureus bacteria got reduced at a respective rate of 89.93, 84.55, and 94.19% for in raw milk. The reactive species formed during microplasma discharge disrupts the structural integrity of bacterial cells and inactivates it, thereby enhancing the milk shelf life. Treated samples remained in good condition for 8 days. Thus, microplasma discharge increases the shelf life of milk by quickly inactivating the bacterial load

    Degradation of Methylene Blue Using Microplasma Discharge – A Relative Study with Photodegradation

    Get PDF
    Large-scale production and application of synthetic dyes have become a matter of concern as it is a major factor responsible for environmental pollution. Most dyeing effluents are discharged into water bodies and lands without being treated, which ultimately pollutes the groundwater making it unfit for consumption. The present study explains the degradation of one of such synthetic dyes Methylene blue (MB), using non-thermal Microplasma treatment. The aqueous solution of MB was treated with an array of air microplasma discharge at atmospheric pressure. Different concentrations (10 ppm, 20 ppm) of MB solution were treated for various treatment time and chemical parameters like pH, electrical conductivity, total dissolved solids and salinity was measured. The degradation percentage reached 100% in 15 min of treatment for 10 ppm MB solution, and 20 min of treatment for 20 ppm MB solution indicated by the color change from blue to a clear solution. The reactive oxygen species (ROS) and reactive nitrogen species (RNS) formed during the microplasma treatment are responsible for MB degradation. Same volume of MB solution was irradiated by direct sunlight for photodegradation and was found to degrade the solution of 10 ppm by 96% and 20 ppm by 93% in 10 hours of treatment. Experimental results indicated that microplasma treatment was effective for dye degradation, without the need for pretreatment process or chemicals

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103
    corecore