756 research outputs found

    Performance analysis of a parallel, multi-node pipeline for DNA sequencing

    Get PDF
    Post-sequencing DNA analysis typically consists of read mapping followed by variant calling and is very time-consuming, even on a multi-core machine. Recently, we proposed Halvade, a parallel, multi-node implementation of a DNA sequencing pipeline according to the GATK Best Practices recommendations. The MapReduce programming model is used to distribute the workload among different workers. In this paper, we study the impact of different hardware configurations on the performance of Halvade. Benchmarks indicate that especially the lack of good multithreading capabilities in the existing tools (BWA, SAMtools, Picard, GATK) cause suboptimal scaling behavior. We demonstrate that it is possible to circumvent this bottleneck by using multiprocessing on high-memory machines rather than using multithreading. Using a 15-node cluster with 360 CPU cores in total, this results in a runtime of 1 h 31 min. Compared to a single-threaded runtime of similar to 12 days, this corresponds to an overall parallel efficiency of 53%

    Maximum Covering Subtrees for Phylogenetic Networks

    Full text link
    Tree-based phylogenetic networks, which may be roughly defined as leaf-labeled networks built by adding arcs only between the original tree edges, have elegant properties for modeling evolutionary histories. We answer an open question of Francis, Semple, and Steel about the complexity of determining how far a phylogenetic network is from being tree-based, including non-binary phylogenetic networks. We show that finding a phylogenetic tree covering the maximum number of nodes in a phylogenetic network can be be computed in polynomial time via an encoding into a minimum-cost maximum flow problem

    Solitary metastatic adenocarcinoma of the sternum treated by total sternectomy and chest wall reconstruction using a Gore-Tex patch and myocutaneous flap: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The consequences of bone metastasis are often devastating. Although the exact incidence of bone metastasis is unknown, it is estimated that 350,000 people die of bone metastasis annually in the United States. The incidence of local recurrences after mastectomy and breast-conserving therapy varies between 5% and 40% depending on the risk factors and primary therapy utilized. So far, a standard therapy of local recurrence has not been defined, while indications of resection and reconstruction considerations have been infrequently described. This case report reviews the use of sternectomy for breast cancer recurrence, highlights the need for thorough clinical and radiologic evaluation to ensure the absence of other systemic diseases, and suggests the use of serratus anterior muscle flap as a pedicle graft to cover full-thickness defects of the anterior chest wall.</p> <p>Case presentation</p> <p>We report the case of a 70-year-old Caucasian woman who was referred to our hospital for the management of a retrosternal mediastinal mass. She had undergone radical mastectomy in 1999. Computed tomography and magnetic resonance imaging revealed a 74.23 × 37.7 × 133.6-mm mass in the anterior mediastinum adjacent to the main pulmonary artery, the right ventricle and the ascending aorta. We performed total sternectomy at all layers encompassing the skin, the subcutaneous tissues, the right pectoralis major muscle, all the costal cartilages, and the anterior part of the pericardium. The defect was immediately closed using a 0.6 mm Gore-Tex cardiovascular patch combined with a serratus anterior muscle flap. Our patient had remained asymptomatic during her follow-up examination after 18 months.</p> <p>Conclusion</p> <p>Chest wall resection has become a critical component of the thoracic surgeon's armamentarium. It may be performed to treat either benign conditions (osteoradionecrosis, osteomyelitis) or malignant diseases. There are, however, very few reports on the results of full-thickness complete chest wall resections for locally recurrent breast cancer with sufficient safety margins, and even fewer reports that describe the operative technique of using the serratus anterior muscle as a pedicled flap.</p

    Using visual lifelogs to automatically characterise everyday activities

    Get PDF
    Visual lifelogging is the term used to describe recording our everyday lives using wearable cameras, for applications which are personal to us and do not involve sharing our recorded data. Current applications of visual lifelogging are built around remembrance or searching for specific events from the past. The purpose of the work reported here is to extend this to allow us to characterise and measure the occurrence of everyday activities of the wearer and in so doing to gain insights into the wearer's everyday behaviour. The methods we use are to capture everyday activities using a wearable camera called SenseCam, and to use an algorithm we have developed which indexes lifelog images by the occurrence of basic semantic concepts. We then use data reduction techniques to automatically generate a profile of the wearer's everyday behaviour and activities. Our algorithm has been evaluated on a large set of concepts investigated from 13 users in a user experiment, and for a group of 16 popular everyday activities we achieve an average F-score of 0.90. Our conclusions are that the the technique we have presented for unobtrusively and ambiently characterising everyday behaviour and activities across individuals is of sufficient accuracy to be usable in a range of applications

    Oxidative Stress-Induced JNK/AP-1 Signaling is a Major Pathway Involved in Selective Apoptosis of Myelodysplastic Syndrome Cells by Withaferin-A

    Get PDF
    Myelodysplastic syndromes (MDS) are a diverse group of malignant clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, dysplastic cell morphology in one or more hematopoietic lineages, and a risk of progression to acute myeloid leukemia (AML). Approximately 50% of MDS patients respond to current FDA-approved drug therapies but a majority of responders relapse within 2-3 years. There is therefore a compelling need to identify potential new therapies for MDS treatment. We utilized the MDS-L cell line to investigate the anticancer potential and mechanisms of action of a plant-derived compound, Withaferin A (WFA), in MDS. WFA was potently cytotoxic to MDS-L cells but had no significant effect on the viability of normal human primary bone marrow cells. WFA also significantly reduced engraftment of MDS-L cells in a xenotransplantation model. Through transcriptome analysis, we identified reactive oxygen species (ROS)-activated JNK/AP-1 signaling as a major pathway mediating apoptosis of MDS-L cells by WFA. We conclude that the molecular mechanism mediating selective cytotoxicity of WFA on MDS-L cells is strongly associated with induction of ROS. Therefore, pharmacologic manipulation of redox biology could be exploited as a selective therapeutic target in MDS

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Targeting cyclin D3/CDK6 activity for treatment of Parkinson’s disease.

    Get PDF
    30 p.-7 fig.-1 tab.At present, treatment for Parkinson’s disease (PD) is only symptomatic, therefore it is important to identify new targets tackling the molecular causes of the disease. We previously found that lymphoblasts from sporadic PD patients display increased activity of the cyclin D3/CDK6/pRb pathway and higher proliferation than control cells. These features were considered systemic manifestations of the disease, as aberrant activation of cell cycle is involved in neuronal apoptosis. The main goal of this work was to elucidate whether the inhibition of cyclin D3/CDK6-associated kinase activity could be useful in PD treatment. For this purpose, we investigated the effects of two histone deacetylase (HDAC) inhibitors, suberoylanilide hydroxamic acid (SAHA) and sodium butyrate (NaB), and the m-TOR inhibitor rapamycin on cell viability and cyclin D3/CDK6 activity. Moreover, the potential neuroprotective action of these drugs was evaluated in 6-hydroxy-dopamine (6-OHDA) treated dopaminergic SH-SY5Y cells and primary rat mesencephalic cultures. Here we report that both compounds normalized the proliferative activity of PD lymphoblasts and reduced the 6-OHDA-induced cell death in neuronal cells by preventing the overactivation of the cyclin D3/CDK6/pRb cascade.Considering that these drugs are already used in clinic for treatment of other diseases with good tolerance, it is plausible that they may serve as novel therapeutic drugs for PD.This work has been supported by grants from Ministerio de Economía y Competitividad (SAF2011-28603) and Fundación Ramón Areces.Peer reviewe

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut

    Get PDF
    Background: Detection of somatic mutations is one of the main goals of next generation DNA sequencing. A wide range of experimental systems are available for the study of spontaneous or environmentally induced mutagenic processes. However, most of the routinely used mutation calling algorithms are not optimised for the simultaneous analysis of multiple samples, or for non-human experimental model systems with no reliable databases of common genetic variations. Most standard tools either require numerous in-house post filtering steps with scarce documentation or take an unpractically long time to run. To overcome these problems, we designed the streamlined IsoMut tool which can be readily adapted to experimental scenarios where the goal is the identification of experimentally induced mutations in multiple isogenic samples. Methods: Using 30 isogenic samples, reliable cohorts of validated mutations were created for testing purposes. Optimal values of the filtering parameters of IsoMut were determined in a thorough and strict optimization procedure based on these test sets. Results: We show that IsoMut, when tuned correctly, decreases the false positive rate compared to conventional tools in a 30 sample experimental setup; and detects not only single nucleotide variations, but short insertions and deletions as well. IsoMut can also be run more than a hundred times faster than the most precise state of art tool, due its straightforward and easily understandable filtering algorithm. Conclusions: IsoMut has already been successfully applied in multiple recent studies to find unique, treatment induced mutations in sets of isogenic samples with very low false positive rates. These types of studies provide an important contribution to determining the mutagenic effect of environmental agents or genetic defects, and IsoMut turned out to be an invaluable tool in the analysis of such data. © 2017 The Author(s)
    corecore