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Abstract
Post-sequencing DNA analysis typically consists of read mapping followed by variant
calling and is very time-consuming, even on a multi-core machine. Recently, we
proposed Halvade, a parallel, multi-node implementation of a DNA sequencing
pipeline according to the GATK Best Practices recommendations. The MapReduce
programming model is used to distribute the workload among different workers.
In this paper, we study the impact of different hardware configurations on the
performance of Halvade. Benchmarks indicate that especially the lack of good
multithreading capabilities in the existing tools (BWA, SAMtools, Picard, GATK)
cause suboptimal scaling behavior. We demonstrate that it is possible to circumvent
this bottleneck by using multiprocessing on high-memory machines rather than using
multithreading. Using a 15-node cluster with 360 CPU cores in total, this results in
a runtime of 1h 31 min. Compared to a single-threaded runtime of ∼12 days, this
corresponds to an overall parallel efficiency of 53%.
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Introduction

Post-sequencing DNA analysis typically consists of the alignment of reads
to a reference genome (‘read mapping’) followed by the identification of
differences between the reference genome and the aligned reads (‘vari-
ant calling’). For both tasks, numerous tools have been described in
literature. Recently, the Broad Institute has proposed the Best Prac-
tices recommendations [12013Van der Auwera et al.] for a DNA variant call-
ing pipeline based on BWA [22009li et al.] for read alignment, SAM-
tools [32009Li et al.]/Picard [42009Wysoker et al.] for data preprocessing and
GATK [52010McKenna et al., 62011Depristro et al.] for variant calling. Espe-
cially for whole-genome datasets, this pipeline is very time consuming with
a single-core runtime of ∼12 days to process the NA12878 dataset (Illumina
Platinum genomes, 1.5 billion paired-end reads, 100 bp, 50-fold coverage, human
genome). Even when enabling multithreading support in the individual tools,
the execution time for this dataset is still ∼5 days on a 24-core machine (dual
socket Intel Xeon E5-2695 v2 @ 2.40GHz), indicative of a poor scaling behavior.

To deal with this bottleneck, we recently proposed Hal-
vade [72015Decap et al.], a parallel, multi-node framework in which a
variant calling pipeline has been implemented according to the GATK Best
Practices recommendations. Halvade relies on the MapReduce programming
model [82008Dean et al.] to run multiple instances of existing tools (BWA,
SAMtools/Picard, GATK) in parallel both across and within nodes on subsets
of the data. Halvade is based on the simple observation that read mapping is
parallel by read (i.e., aligning a certain read does not depend on the alignment
of other reads) while variant calling is parallel by genomic region (i.e., variant
calling in a certain genomic region does not depend on variant calling in other
genomic regions). During the map phase, BWA is used to align reads to a
reference genome in parallel, whereas data preprocessing (SAMtools/Picard)
and variant calling (GATK) are handled during the reduce phase by operating
on different genomic regions in parallel. In between the map and reduce
step, the aligned reads are sorted according to genomic position using the
MapReduce sorting functionality. For details about the implementation of
Halvade and the tools involved we refer to [72015Decap et al.].
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In [72015Decap et al.], it was demonstrated that Halvade strongly reduces the
runtime: on a 15-node cluster, each node containing 24 CPU cores and 64 GB of
RAM, the NA12878 is processed in 2h 39 min. Additionally, it was shown that
the multi-node parallel efficiency of Halvade is excellent (around 90%), which
means that the runtime is significantly reduced by using 15 nodes compared
to using only a single node. However, significant performance loss can still be
observed within each node. This can be seen from the overall performance:
with a runtime of 2h 39 min using 360 CPU cores (15 nodes × 24 cores/node), a
speedup of ∼108 is obtained compared to a single-threaded runtime of ∼12 days.
This corresponds to an overall parallel efficiency of about 30%, suggesting the
presence of certain performance bottlenecks. Understanding the performance of
a sequencing pipeline is a non-trivial matter. Certain components in the pipeline
are very compute-intensive (e.g. read alignment) whereas other components (e.g.
data preprocessing) are mostly data-intensive. Therefore, certain tools might be
CPU bound whereas others might be limited by I/O bandwidth. In order to
better understand the influence of hardware configuration on the performance
of sequencing pipelines, we have set up a range of benchmarks in order to identify
possible bottlenecks. Specifically, in this paper, we study the influence on the
total runtime of the amount of available RAM, the presence of NUMA domains,
the type of network interconnection, the use of solid-state disks versus hard-
disk drives and finally, the use of a distributed vs. centralized file system. We
demonstrate that the use of high-memory machines and NUMA optimizations
can further reduce the overall runtime whereas other hardware aspects have
only limited influence. Ultimately, this allows us to process the entire NA12878
dataset in 1h 31 min, yielding an overall parallel efficiency of 53%.

Halvade is written in Java using the Hadoop MapReduce 2.0 API. The source
is available at http://bioinformatics.intec.ugent.be/halvade under GPL license.

Dataset and tool versions

In all benchmarks variant calling was performed on a whole-genome DNA
sequencing dataset (NA12878, human genome, Illumina Platinum Genomes)
or a subset thereof. The full dataset consists of 1.5 billion 100 bp paired-end
reads (50-fold coverage) stored in two 43 GB compressed (gzip) FASTQ files.

For these benchmarks, GATK version 3.1.1, BWA version 0.7.12-
r1044, BEDTools version 2.17.0, elPrep version 1.0 [92015Herzeel et al.],
SAMtools version 0.1.19 and Picard version 1.112 were used. The
dbSNP [102001Sherry et al.] database and human genome reference found in
the GATK hg19 resource bundle [112013Van der Auwera et al] were used.

Single Node Benchmarks

As the runtime of the complete NA12878 dataset on a single node is
impractically high, all benchmarks in this section were performed on a
representative subset of 131 million paired-end reads (about 9% of the total
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number of reads). Benchmarks in this section were run on a single 24-core node
(dual Intel E5-2680v3 @ 2.50GHz) with 512 GB of RAM.

Influence of the number of tasks per node

When running Halvade, the number of parallel tasks (mappers/reducers) per
node can have a big influence on performance. The number of tasks per node
corresponds to the number of instances of the individual tools (BWA, GATK,
etc.) that are being run in parallel on a machine. One scenario is to run only a
single task and to use the multithreading functionality of the tools to make use
of the available cores. An alternative scenario is to run multiple tasks in parallel
on the same node, each task then using only a fraction of the available cores.
Because of suboptimal multithreading scalability of certain individual tools, the
choice in number of tasks can have a big impact on runtime. This is illustrated
in Table 1 where the runtime is shown for three scenarios: (i) 1 task using 24
cores for multithreading; (ii) 4 tasks each using 6 cores for multithreading and
(iii) 24 tasks without multithreading. The sequential runtime (single core) of
the pipeline is ∼30.5h. When allowing the individual tools to run 24 threads
on the same machine, the runtime reduces to ∼16.5h, resulting in a very low
parallel efficiency of only 7.7%. This poor scaling can be observed in both
map and reduce phase, but is especially pronounced in the reduce phase. It
is caused partly by the lack of multithreading support in some of the tools
used, e.g. BWA sampe and Picard. However, even the modules of GATK that
do support multithreading exhibit poor scaling behavior. When moving from
multithreading to multitasking as supported by Halvade, runtimes decrease
significantly. Using 4 tasks with 6 threads each, runtime reduces to ∼4.5 h. When
using 24 tasks without multithreading a runtime of only 1h 42 min is obtained,
corresponding to a parallel efficiency of 74.7%. We observed an increased CPU
utilization during pipeline execution when using 24 parallel tasks compared to
using multithreading in 1 task.

On this type of node, optimal runtime is achieved when using a maximum
number of tasks without multithreading. However, this is only possible because
the node provides a sufficient amount of RAM (512 GB in this case). Tests
indicate that certain GATK modules require almost 16 GB of RAM. Therefore,
the maximum number of tasks might be limited by the memory that is provided
by a node.

Influence of the presence of NUMA domains

Many recent systems make use of non-uniform memory access (NUMA)
domains. Each NUMA domain contains a number of CPU cores and part of
the RAM. Cores have faster access to memory that resides in the same NUMA
domain (‘local’ access) and slower access to memory that is outside this domain
(‘remote’ access). Files on disk that are accessed by a tool are typically buffered
in memory by the Linux operating system. If different processes are accessing
the same file, this buffered copy of (part of) the file can be located in a
different NUMA domain than that of the core accessing it. If sufficient memory
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Table 1. Runtime and parallel efficiency as a function of the number of tasks per node.

map phase reduce phase total
runtime efficiency runtime efficiency runtime efficiency

single-threaded 14h 50 min n/a 15h 38 min n/a 30h 28 min n/a
1 task × 24 threads 4h 28 min 13.84% 12h 3 min 5.41% 16h 31 min 7.69%
4 tasks × 6 threads 1h 21 min 45.78% 3h 6 min 21.01% 4h 27 min 28.53%
24 tasks × 1 threads 47 min 78.80% 55 min 71.06% 1h 42 min 74.67%
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Figure 1. Comparison of the runtime (summed over all 24 parallel tasks) for each
individual tool/module used in Halvade with and without optimized NUMA locality.

is available we can make distinct copies of the reference file to each of the NUMA
domains and as such speed up the file access and seek times. We implemented
this idea through the use of wrappers around certain Java calls. In this wrapper
the NUMA domain of the assigned cores are determined and a copy is made for
that domain on local scratch if it was not yet created. This way each domain
has its own local copy which will be cached in the different NUMA domains.

Using 24 tasks on a single node and the entire NA12878 dataset, Fig. 1 shows
the runtime of the different components (summed over all 24 tasks) of the
pipeline with and without the use of the wrappers. For most components, the
influence is only marginal with the ScoreRecalibrator module from GATK being
a notable exception. In that particular case, a reduction in runtime of 45% can
be observed when using the wrappers. This is a process where a dbSNP database
file (roughly 10 GB) is intensively used to generate recalibration tables. In this
case, the improved NUMA data locality considerably improves runtime.

Multi-node benchmarks

Influence of the use of solid state disks

Many tools within Halvade rely on local disk I/O (scratch). This includes reading
the reference genome and accessing the dbSNP database as well as writing and
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Figure 2. Disk I/O (scratch) observed on a worker node. Note that almost no data is
actually being read from disk as data are still cached in memory.

Figure 3. Network I/O observed on a single worker node.

reading intermediate data generated by the different GATK modules as well
as BWA-aln and BWA-sampe. We tested the performance difference between
using solid state drives (SSD) and regular hard disk drives (HDD). Test results
indicate only minimal differences in runtime. This is due to the relatively low
overall disk usage during the execution of the Halvade job. The disk I/O volume
was measured in intervals of one minute and converted to MB/s (see Fig. 2).
With the exception of a peak during sorting phase, the disk I/O is well below
100 MB/s (averaged over one minute) which is well within the range of modern
HDDs. During the entire job, volumes read from disk were very low, leading
us to the conclusion that almost all data written to local disk was cached in
memory by the operating system and again accessed from memory in the next
step.

Influence of the interconnection network

In between map and reduce phase, aligned reads are sorted according to genomic
position. This parallel sorting step involves the movement of large volumes of
data over the interconnection network. The network I/O volume was measured
in intervals of one minute and again converted to MB/s (see Fig. 3). Again, as
network I/O is below 100 MB/s, almost no performance benefit was observed
by using an Infiniband interconnect over a 10 Gbit Ethernet network.

Influence of the file system

Traditionally, MapReduce relies on the Hadoop Distributed File System (HDFS)
to read input and write final output data. In that case, data is stored on the
local disks of the worker nodes in a distributed fashion. Alternatively, centralized
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Figure 4. Execution of the NA12878 dataset on a 15-node cluster. Each node runs 24
tasks in parallel. Note that certain tasks are used by MapReduce for task tracking and
scheduling purposes.

file systems such as IBM’s Generalized Parallel File System (GPFS) or the
Intel Enterprise Edition for Lustre software can be used. In that case, data is
stored on separate data nodes and transferred to the worker nodes through an
interconnection network. As the pipeline is rather compute-intensive, all three
systems were able to provide data to the worker nodes at a sufficiently high
rate, hence almost no performance difference was observed. However, the use
of Intel’s Hadoop Adapter for Lustre included in Intel Enterprise Edition for
Lustre software has two advantages. First, it decreases the time spent during
the sort & shuffle phase compared with HDFS/GPFS. Second, Lustre uses less
memory on the worker nodes. This can be important on nodes with limited
memory capacity. For instance, on nodes equipped with 64 GB of RAM running
4 Halvade tasks, we noticed that certain reduce tasks failed because of memory
shortage. The cause of this is the difference in coverage over the different genomic
regions and thus some tasks will have more reads to process. These reduce tasks
had to be rescheduled causing an increase in runtime. On a 7-node cluster, the
use of Intel’s Hadoop Adapter for Lustre included in Intel Enterprise Edition
for Lustre software decreased the runtime from 5h 27 min (using HDFS) to 4h
48 min on the same cluster.

Benchmark of NA12878 dataset on a 15-node cluster

Halvade was used to process the complete NA12878 dataset on a 15-node cluster,
each node containing 24 CPU cores (dual-socket Intel E5-2680v3 @ 2.50GHz)
with 512 GB of RAM and three solid-state drivers (SSD) of 400 GB in RAID 0
to store intermediate data (local scratch). The nodes are interconnected through
an Infiniband network and access a GPFS storage through a second Infiniband
network. Note that Lustre was not available on this cluster. Cloudera CDH 5.3
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Figure 5. Distribution of runtime of the different tasks. Each map task (1569 in total)
consists of aligning a chunk of ∼60 MB of the input FASTQ file to the reference
genome. Each reduce task (1303 in total) involves data preprocessing and variant calling
in a genomic region of about ∼2.3 Mbp.

is deployed as a Hadoop distribution by HanythingOnDemand [122014Higgs].
Halvade was configured to use 24 tasks per node, hence up to 360 tasks (24 tasks
× 15 nodes) were run in parallel. NUMA optimizations were in place. On this
cluster, Halvade completed read alignment and variant calling of the NA12878
dataset in 1h 31 min. Compared to a single-threaded runtime of ∼12 days, this
represents and overall speedup of a factor of ∼190 or a parallel efficiency of 53%.

We can now compare this result to previously reported results
in [72015Decap et al.]. A runtime of 2h 39 min was reported on a comparable 15-
node cluster, however, in that case the nodes were equipped with only 64 GB of
memory. Therefore, it was optimal to run only 4 parallel tasks per node instead
of 24 causing significant loss of efficiency within each node. On the other hand,
running 360 tasks in parallel significantly increases the task scheduling overhead
and makes it more difficult for the MapReduce framework to evenly distribute
the workload among the different tasks. This can be clearly observed in Fig. 4
where a non-negligible load imbalance can be observed in both the map and
reduce phase. The underlying cause for this is a rather large variation in task
execution time (see Fig. 5). Ultimately, with the current status of multithreading
performance in the available tools, it is still best to use as many tasks on a node
as possible. Note that the newer BWA-mem (also supported by Halvade) already
features much improved multithreading performance over BWA-aln/sampe.

Conclusion

We investigated the impact of different hardware configurations on the runtime
of Halvade, a parallel, multi-node framework that implements a variant calling
pipeline according to the GATK Best Practices recommendations. Halvade relies
on BWA for read mapping and GATK for variant calling.

Even though Halvade is primarily intended to allow for a multi-node
parallelization of sequencing pipelines, Halvade can be used to significantly
speed up post-sequencing analysis on a single node. This is because the
overall parallel efficiency of the individual tools is very low: a speedup
of less than 2 is observed when moving from single-threaded execution to
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multithreaded execution on a 24-core machine. Part of this poor scaling
behavior can be explained by the fact that BWA-sampe and Picard do not
support multithreading, however, most of the GATK modules involved in the
pipeline also do not exhibit good scaling behavior. This scaling behaviour has
also been observed in several other mapping tools in [132013Hatem et al.].
By using Halvade on high-memory nodes, multithreading can be replaced by
multitasking. The latter is far more efficient, which has also been shown in
[142014Kutlu et al.], and a speedup of ∼18 is obtained on a 24-core machine.

Additionally, having much memory in a system allows to hold a copy of
buffered files in each of the NUMA domains. As such, CPU cores have access
to a copy in the local NUMA domain, thus avoiding remote memory access.
For the GATK ScoreRecalibrator module, this improves the runtime by nearly
a factor of two.

Other hardware aspects, such as local disk speed (solid state drives vs. regular
hard disk drives), speed of interconnection network (Infiniband vs. Ethernet
networks) or file system (HDFS vs. GPFS) have only a minor influence on
overall runtime. Even though a typical whole-genome dataset involves hundreds
of GB of input data and a multiple thereof of intermediate data, the sequencing
pipeline is mostly compute-intensive and hence, runtime is mostly influenced by
the compute capacity of a node, rather than I/O speed.

Finally, Intel Enterprise Edition for Lustre software was investigated. The use
of Intel’s Hadoop Adapter for Lustre included in Intel Enterprise Edition for
Lustre software simplifies the shuffle & sort which leads to better performance.
Additionally, Lustre uses less memory which can be important when high-
memory machines are not available.

With all optimizations in place, Halvade is able to complete read alignment
and variant calling of the complete NA12878 dataset in 1 hour and 31 minutes
on a 15-node cluster, each node containing 24 CPU cores and 512 GB of RAM.
Compared to a single-threaded runtime of ∼12 days for this pipeline, this
represents an overall speedup of a factor of ∼190 or a parallel efficiency of
53%.
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