231 research outputs found

    Ethanolic extract of melgota (Macaranga postulata) for repellency, insecticidal activity against rice weevil (Sitophilus oryzae)

    Get PDF
    Ethanolic extract of Melgota is used for repellency, insecticidal activity against rice weevil (Sitophilus oryzae) with emphasis on chemical investigation. Fruits of Melgota (Macaranga postulata) wereextracted on different solvents as in ethanol, acetone, petroleum ether, distilled water and the extracts were concentrated and dried. The ethanol extracts of Melgota (M. postulata) of differentconcentrations were investigated for their repellency and insecticidal activity against S. oryzae. Average mortality percentage indicated that the extracts caused significant mortality and repellencyon the target insects and bioassays indicated that the toxic and repellent effect was proportional to the concentration and higher concentration has stronger effect. Observed mortality percentageincreased with increase in time intervals after treatment. Mortality percentage at 0.25, 0.50, 0.75, 1.00, and 1.50 h after treatment (HAT) indicated that 4% solution showed the highest mortality (34.0%) in S.oryzae at 1.50 HAT compared to pediculus humanus. Mortality percentage showed parallel response to the level of concentration at different time intervals after treatment. 1% fruit extract of Melgota (M.postulata) showed the lowest repellency 9.84 % in case of rice weevil. On other side, 2% showed 12.76% and 4% showed 22.43% respectively. TLC of crude ethanol extract of Melgota (M. postulata)showed six distinct compounds at uv-visible light

    Star forming dwarf galaxies

    Full text link
    Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in pres

    Uracil DNA N-Glycosylase Promotes Assembly of Human Centromere Protein A

    Get PDF
    Uracil is removed from DNA by the conserved enzyme Uracil DNA N-glycosylase (UNG). Previously, we observed that inhibiting UNG in Xenopus egg extracts blocked assembly of CENP-A, a histone H3 variant. CENP-A is an essential protein in all species, since it is required for chromosome segregation during mitosis. Thus, the implication of UNG in CENP-A assembly implies that UNG would also be essential, but UNG mutants lacking catalytic activity are viable in all species. In this paper, we present evidence that UNG2 colocalizes with CENP-A and H2AX phosphorylation at centromeres in normally cycling cells. Reduction of UNG2 in human cells blocks CENP-A assembly, and results in reduced cell proliferation, associated with increased frequencies of mitotic abnormalities and rapid cell death. Overexpression of UNG2 induces high levels of CENP-A assembly in human cells. Using a multiphoton laser approach, we demonstrate that UNG2 is rapidly recruited to sites of DNA damage. Taken together, our data are consistent with a model in which the N-terminus of UNG2 interacts with the active site of the enzyme and with chromatin

    Comparison of prevalence, viral load, physical status and expression of human papillomavirus-16, -18 and -58 in esophageal and cervical cancer: a case-control study

    Get PDF
    Background: Human papillomavirus (HPV) infection is a major risk factor for the development of nearly all cases of cervical cancer worldwide. The presence of HPV DNA in cases of esophageal squamous-cell carcinoma (ESCC) has been reported repeatedly from Shantou, China, and other regions with a high incidence of esophageal carcinoma (EC). However, unlike in cervical squamous-cell carcinoma (CSCC), in ESCC, the characteristics of HPV are unclear. Thus, the role of high-risk HPV types in the carcinogenesis of ESCC remains uncertain. Methods: Seventy cases of ESCC with 60 controls and 39 cases of CSCC with 54 controls collected from patients in Shantou region in China were compared for the distributions of HPV-16, -18 and -58; viral load; and viral integration using real-time PCR assay and HPV-16 expression using immunostaining. Results: The detection rates and viral loads of HR-HPV infection were significantly lower in ESCC than in CSCC (50.0% vs. 79.48%, P = 0.005; 2.55 +/- 3.19 vs. 361.29 +/- 441.75, P = 0.002, respectively). The combined integration level of HPV-16, -18 and -58 was slightly lower in ESCC than in CSCC (P = 0.022). HPV-16 expression was detected in 59.26% of ESCC tissue and significantly associated with tumour grade (P = 0.027). Conclusions: High levels of HR-HPV expression and integration may be an indicator of the risk of ESCC, at least for patients in the Shantou region of China. However, a relatively low HPV copy number and infection rate in ESCC is unlikely to play an essential a role in the carcinogenesis of ESCC as in cervical cancer. Factors other than HR-HPV infection may contribute to the carcinogenesis of ESCC.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000285251600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701OncologySCI(E)26ARTICLEnull1

    The association between subjective memory complaint and objective cognitive function in older people with previous major depression

    Get PDF
    The goal of this study is to investigate associations between subjective memory complaint and objective cognitive performance in older people with previous major depression-a high-risk sample for cognitive impairment and later dementia. A cross-sectional study was carried out in people aged 60 or over with previous major depression but not fulfilling current major depression criteria according to DSM-IV-TR. People with dementia or Mini-Mental State Examination score less than 17 were excluded. Subjective memory complaint was defined on the basis of a score ≧4 on the subscale of Geriatric Mental State schedule, a maximum score of 8. Older people aged equal or over 60 without any psychiatric diagnosis were enrolled as healthy controls. Cognitive function was evaluated using a series of cognitive tests assessing verbal memory, attention/speed, visuospatial function, verbal fluency, and cognitive flexibility in all participants. One hundred and thirteen older people with previous major depression and forty-six healthy controls were enrolled. Subjective memory complaint was present in more than half of the participants with depression history (55.8%). Among those with major depression history, subjective memory complaint was associated with lower total immediate recall and delayed verbal recall scores after adjustment. The associations between subjective memory complaint and worse memory performance were stronger in participants with lower depressive symptoms (Hamilton Depression Rating Scale score<7). The results suggest subjective memory complaint may be a valid appraisal of memory performance in older people with previous major depression and consideration should be given to more proactive assessment and follow-up in these clinical samples

    Gene Expression Profiling of Human Decidual Macrophages: Evidence for Immunosuppressive Phenotype

    Get PDF
    Background: Although uterine macrophages are thought to play an important regulatory role at the maternal-fetal interface, their global gene expression profile is not known. Methodology/Principal Findings: Using micro-array comprising approximately 14,000 genes, the gene expression pattern of human first trimester decidual CD14+ monocytes/macrophages was characterized and compared with the expression profile of the corresponding cells in blood. Some of the key findings were confirmed by real time PCR or by secreted protein. A unique gene expression pattern intrinsic of first trimester decidual CD14+ cells was demonstrated. A large number of regulated genes were functionally related to immunomodulation and tissue remodelling, corroborating polarization patterns of differentiated macrophages mainly of the alternatively activated M2 phenotype. These include known M2 markers such as CCL-18, CD209, insulin-like growth factor (IGF)-1, mannose receptor c type (MRC)-1 and fibronectin-1. Further, the selective up-regulation of triggering receptor expressed on myeloid cells (TREM)-2, alpha-2-macroglobulin (A2M) and prostaglandin D2 synthase (PGDS) provides new insights into the regulatory function of decidual macrophages in pregnancy that may have implications in pregnancy complications. Conclusions/Significance: The molecular characterization of decidual macrophages presents a unique transcriptional profile replete with important components for fetal immunoprotection and provides several clues for further studies of these cells.Original Publication:Charlotte Gustafsson (Lidström), Jenny Mjösberg, Andreas Matussek, Robert Geffers, Leif Matthiesen, Göran Berg, Surendra Sharma, Jan Buer and Jan Ernerudh, Gene expression profiling of human decidual macrophages: Evidence for immunosuppressive phenotype, 2008, PLoS ONE, (3), 4, e2078.http://dx.doi.org/10.1371/journal.pone.0002078Copyright: Public Library of Science (PLoS)http://www.plos.org

    Female germ unit in Genlisea and Utricularia, with remarks about the evolution of the extra-ovular female gametophyte in members of Lentibulariaceae

    Get PDF
    Lentibulariaceae is the largest family among carnivorous plants which displays not only an unusual morphology and anatomy but also the special evolution of its embryological characteristics. It has previously been reported by authors that Utricularia species lack a filiform apparatus in the synergids. The main purposes of this study were to determine whether a filiform apparatus occurs in the synergids of Utricularia and its sister genus Genlisea, and to compare the female germ unit in these genera. The present studies clearly show that synergids in both genera possess a filiform apparatus; however, it seems that Utricularia quelchii synergids have a simpler structure compared to Genlisea aurea and other typical angiosperms. The synergids are located at the terminal position in the embryo sacs of Pinguicula, Genlisea and were probably also located in that position in common Utricularia ancestor. This ancestral characteristic still occurs in some species from the Bivalvaria subgenus. An embryo sac, which grows out beyond the limit of the integument and has contact with nutritive tissue, appeared independently in different Utricularia lineages and as a consequence of this, the egg apparatus changes position from apical to lateral

    DNA glycosylases: in DNA repair and beyond

    Get PDF
    The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereby initiating a repair process that restores the regular DNA structure with high accuracy. All glycosylases share a common mode of action for damage recognition; they flip bases out of the DNA helix into a selective active site pocket, the architecture of which permits a sensitive detection of even minor base irregularities. Within the past few years, it has become clear that nature has exploited this ability to read the chemical structure of DNA bases for purposes other than canonical DNA repair. DNA glycosylases have been brought into context with molecular processes relating to innate and adaptive immunity as well as to the control of DNA methylation and epigenetic stability. Here, we summarize the key structural and mechanistic features of DNA glycosylases with a special focus on the mammalian enzymes, and then review the evidence for the newly emerging biological functions beyond the protection of genome integrity
    corecore