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Abstract 

 

 We present a feasible methodology to prepare nonwetting surfaces from natural 

minerals. Various ranges of silanes were used for the surface grafting and the best 

customization was achieved by monochlorosilane. Water affinity analysis of surface 

functionalized diatomaceous earth was the key aspect of loading tunable wettability on 

particle surface. Covalent attachment was confirmed via X-ray photoelectron spectroscopy 

(XPS), while thermogravimetric analysis, nitrogen adsorption isotherms, and contact angle 

measurements were used for the evaluation of grafting density and other fundamental features 

of hydrophobic particles. Diatomaceous earth was chosen as a prototype to develop an 

efficient strategy for surface modification which can be apposite to another natural particle, 

so-called talc, which represents dichotomic performance to water. The present study paves 

the way for a new approach that can be employed to any proper inherent texture for the 

production of superhydrophobic powders. 
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1. Introduction 

Strong research interest has been shown in the development of low-cost and highly 

efficient superhydrophobic (SH) natural particles to replace their refined counterparts due to 

their contributions to surface energy and their unparalleled ability to repel water [1-8]. 

Superhydrophobic materials generally have a low surface energy with a contact angle (CA) 

greater than 150o at room temperature (about 25 oC) and bind very weakly with drops of 

water  resulting in the formation of water beads.[8-10] With regards to previous research, 

water droplets that are deposited on the surface interact with both constituent materials of the 

surface and the air confined within the structure; therefore, the spreading of a liquid on a 

structured surface is generally expressed with a Young’s equation using interfacial free 

energy functions of three boundaries that are in turn solid-water-vapor [11, 12]. The desired 

water repellency can be attributable to strict regulation of key parameters that can repel the 

water and liquids even with remarkably lower surface energy values as in the case of many 

alcohols and alkanes [7]. Techniques to attain appropriate superhydrophobicity comprises 

PTFE coated carbon nanotubes to form flat surface arrays, lithographic methods to form 

periodic arrays of pillars, self-aligned polymer nanospheres and fluorinated polymers or long 

hydrocarbon chains as surface grafting articles [7, 9].  Such organic modifiers not only 

display increased hydrophobicity through driving low surface energy but also they can be 

impregnated to the surface of inherent structure such as natural minerals and textiles [7, 9, 

13-17]. However, there have been no controlled studies which can be feasible as well as cost-

effective to produce durable nonwetting surfaces from unprocessed and “as-received’’ natural 

minerals. 

Structures occurring in nature have been replicated to obtain precise control of 

parameters which produce artificial SH surfaces [18-21]. The lotus leaf would be the best 

example of a SH texture to be inspired from the nature owing to hierarchical surface 

https://www.google.com.tr/search?es_sm=122&q=superhydrophobic&spell=1&sa=X&ei=dJDrVLP3BMarU_XUg5AN&ved=0CBgQvwUoAA


topography with waxy content [9, 18, 20, 21]. One of the developed strategies encouraged by 

nature involves the functionalization of the particle surface via substitution of reactive 

groups, for example silanols, with mono- or multifunctional silanes [7, 22-26]. Specifically, 

fluoroalkyl-modification of a surface has been shown to be a reliable approach both for 

adequate surface coverage of desired functional groups and for fulfilling the required 

conditions of low-surface energy as well as protecting high specific surface area of target 

particles such as silica [7, 27]. Surfaces fabricated through these materials have some 

practical applications covering chromatographic process, biomedical devices, corrosion-

resistant surfaces, self-cleaning, anti-icing and so-forth [18, 24, 28-31]. Nevertheless, some 

new methodologies involving nonwetting by water and many other liquids have also been the 

subject of various research [17, 32-35].  

Among thousands of forms of algae, a unique group, the diatoms or diatomaceous are 

able to absorb miscible silica from water at extremely low concentrations and metabolize and 

accumulate it as an external skeleton which results in sedimentation of diatomaceous earth 

(DE) on the bottom of a sea or lake [21, 36-38]. The distinguished characteristic of DE is its 

siliceous skeleton that is a marvel of sophisticated architecture extending to molecular 

dimensions [21, 36]. To date, DE, therefore, has become a model of many research works 

associated with biomimetic and nanoscale self-assembly [21, 39, 40]. The prominent example 

was introduced by Simpson and D’Urso with the concept of superhydrophobic powder via 

surface coated DE [9]. However, although extensive studies have been carried out on the use 

of DE powder to make superhydrophobic particles, no single study exists which adequately 

defines the conditions that can be applicable to any natural powders to make a 

superhydrophobic surface. 

The rationale for the present work is that little is known about various issues 

corresponding to surface modification of unprocessed natural powders which can have a 



significant effect their performance. For example, silica content can vary widely on the 

mineral type. While reported silica content of typical DE is about 86%, this value could be 

less than 70% in any other mineral such as talc. Moreover, grafting density is another 

parameter which was assumed maximal 4 µmol/m2 for the precipitated silica [7]. Silane 

structure and functionality degree (i.e., mono-, or multi-functional) are other factors that 

affect the wetting characteristics. We hypothesize that surface modification of DE can be a 

model to develop a strategy which then can be applicable to any other unprocessed minerals 

such as talc to make it superhydrophobic. The proof-of-our principle is based on monitoring 

the frontiers of water affinity of inherent texture. One-factor-at-a-time method is also 

preferred to see the influence of every step which can be combined to evaluate the synergistic 

effects of several factors. Additionally, this is the first study to undertake the likelihood of 

fabricating tunable SH surface wettability of diatomaceous earth in a controlled way. For the 

present work, different chlorosilanes were chosen to treat the target surface, with alterations 

in both reaction conditions and silane structures. The effects of grafting density on water 

affinity, wettability as well as suitability for nonwetting surface are discussed. The present 

study fills a gap in the literature by proposing the possibility of potential synergistic approach 

to be implemented to any proper inherent texture for the production of SH powders. 

 

 

2. Experimental Section 

2.1. Materials 

DE mineral (148.62 m2/g surface area) was provided from Beg-Tug Mineral 

Company (Ankara/Turkey). Talc mineral (Omyatalc® 5 EXTRA-KS, 23.62 m2/g surface 



area) was supplied by Omya Mining Co. Inc. (Istanbul, Turkey). Silane reagents, 

demonstrated in Figure 1, 11-(chlorodimethylsilylmethyl)tricosane (Methyltricosane 

monochlorosilane or Mtcos-MCS); 1.2-Bis(trichlorosilyl)decane (Deca-BisTCS); 

Ethyldimethylchlorosilane (Ethyl-MCS); n-butyldimetylchlorosilane (nBut-MCS); 

dodecyldimethylchlorosilane (Dodec-MCS); Nonafluorohexyldimethylchlorosilane (FHex-

MCS); Dimethylchlorosilaneperfluorooctyl (PFOct-MCS) and perfluorodecyl-1H,1H,2H,2H-

dimetylchlorosilane (PFDec-MCS) were purchased from Gelest Inc. Reagent grade 

chloroform, hexane and dichloromethane were purchased from Sigma-Aldrich.          

2.2. Synthesis of Superhydrophobic Diatomaceous Earth 

Step 1 (Without pre-treatment). Two grams of DE “as received” were suspended in 60 

ml chloroform in 250 ml round-bottom flask. 0.430 ml of PFDec-MCS was dispersed in 20 

ml chloroform, assuming to graft 5 µmol/m2, and dropwise added to round-bottom flask 

while the solution was allowed to stir and reflux for 3 h. After DE particles were recovered 

by filtering at room temperature under vacuum, they were purified by extracting three times 

in equal volume of hexane and dichloromethane, respectively, to ensure the elimination of 

any noncovalently bound chloro-functional silane derivatives and other surface impurities. 

After extraction procedure, the DE particles were collected, taken to vials, and dried at room 

temperature for 1 day.  

 

Step 2 (Calcination used). Unlike the first step, two grams of two DE samples, 

calcinated at 400 oC, were suspended in 60 ml chloroform in different reaction flasks.  0.430 

ml and 0.860 ml of PFDec-MCS were dispersed in 20 ml chloroform and then dropwise 

added to DE suspension under reflux with stirring, assuming to obtain 5 µmol/m2 and 10 

µmol/m2 surface coverage, respectively. The reaction process was pursued as described in 

step 1.  



Step 3 (Different Grafting Densities used). The third step for the functionalization of 

DE surface was analogous to the second step with the only difference being the surface 

grafting densities. In this case, 0.213 ml and 0.640 ml of PFDec-MCS were used to attain 2.5 

µmol/m2 and 7.5 µmol/m2 surface coverage. The reaction procedure was identical to step 1.   

Step 4 (Various silanes used). In this step, several silane derivatives, which are in turn 

0.520 ml of Mtcos-MCS, 0.580 ml of Deca-BisTCS, 0.304 ml of nBut-MCS, 0.246 ml of 

Ethyl-MCS, 0.536 ml of Dodec-MCS, 0.530 ml of PFOct-MCS, 0.568 ml of FHex-MCS,  

were used to reach 7.5 µmol/m2 surface coverage for the DE specimens calcinated at 400 oC. 

The reaction procedures were then continued as described in step 1.  

Step 5 (Different mineral used). Two grams of two talc samples, calcinated at 400 oC, 

were used instead of DE. 0.085 ml and 0.113 ml of PFDec-MCS was preferred to achieve the 

surface coverage of 7.5 µmol/m2 and 10 µmol/m2, respectively. All following steps were 

analogous to step 1. 

All the silane treatment steps employed, and abbreviations of the samples and grafting 

densities are summarized in Table 1.   

2.3. Characterization of Samples 

2.3.1. Chemical Properties of Samples 

The chemical content analysis of “as received” and calcinated DE and Talc were 

performed by Thermo Scientific ARL Advant’x X-ray fluorescence Spectrometer. Chemical 

composition of the surface of the samples was analyzed with K-Alpha™+ X-ray 

Photoelectron Spectrometer (XPS) System. Thermogravimetric analysis of samples was 

examined with PerkinElmer STA8000. Samples were heated to 1000 oC at 10 oC/min under 

the controlled atmosphere (N2 gas). The percent weight lost up to 1000 oC was used to 

evaluate thermal stability of grafted layers and to predict the grafting density of customized 

DE.  



2.3.2. Morphology Analysis 

The surface morphology and microstructure of both “as received” and calcinated DE 

minerals were studied by using Zeiss EVO 40 Field Emission Scanning Electron Microscopy 

(FESEM). The materials were introduced onto a conductive carbon tape and coated with gold 

to prevent charging.  

2.3.3. Physical Properties of Samples 

Particle size distribution of minerals was determined via Malvern-Mastersizer 

Hydro2000S in aqueous phase. The Brunauer-Emmett-Teller (BET) surface area of particles 

was determined by nitrogen adsorption by using Quantachrome NOVA 2000e adsorption 

instrument after degassing of samples at 150 oC for 6 h. KSV Attension Theta Lite Optical 

Tensiometer was used for static and dynamic contact angle measurements. The static 

measurements were performed by dispensing a water droplet with an average volume of 4 µL 

whilst dynamic contact angle measurements were employed with different parameters.          

2.3.4. Water Affinity Measurements  

In order to examine the affinities of HME-blank, HME-2 and HME-3 to water, the 

following steps have been taken: All materials were suspended in chloroform and 

ultrasonicated for 1 h in order for X materials to be dispersed thoroughly in solvent. Then, the 

solutions were kept at room temperature for 24 h. By using a shadow mask, gold electrodes 

with 100 nm thickness, 17 μm gap and width of 1500 μm were evaporated thermally on the 

glass substrates. In order to form thin films of each material, 2 μL of each solution was drop 

casted between the gold electrodes as depicted in Figure S1 of supporting information. After 

preparation of thin films of each material, the experimental setup consisting of 2-channel gas 

flow system with required software and equipment was used (Supporting Information, Figure 

S2). Mass flow meters (MFCs) control the system at flows ranging between 0 and 1000 sccm 

and send the flow of pure inert nitrogen (dry N2) into water bubbler to produce wet nitrogen 



(wet N2). A commercial humidity sensor (Sensirion, Switzerland) and a sourcemeter 

(Keithley, model 2636A, USA) were synchronously used to record the real-time humidity 

and electrical response, respectively. Water affinities of HME-blank, HME-2 and HME-3 

were investigated by exposing prepared samples to 86% RH at room temperature and 

measuring the change in the electrical response due to water adsorption. 

 

 

 

3. Results and Discussion 

Since the present study was designed to develop a model work for natural powders 

with low surface energy and to achieve a desired degree of superhydrophobicity in a 

controlled manner, the surface modification conditions were optimized to produce enhanced 

surface coverage on DE. The obtained conditions were taken as model work and applied to 

Talc mineral, which was preferentially chosen due to the fact that it has peculiar affinity 

toward water. The methodology based on the chemical content, morphological character and 

physical properties of chosen powders are the key aspects to maximize grafting density. In 

this respect, the following results highlight several fundamental features of the inherent 

textures mentioned above.  

The chemical composition, surface area and particle size data of the “as-received” DE 

are given in Table S1. The content of silicon oxide was found to be 65.5% for crude DE 

which is less than the typical  silica content of reported crude DE [9]. 

The step 1 was employed to oversimplify substitution of silanols with fluorocarbon 

substituents. In previous studies,[9, 21] preference of crude (uncalcinated) DE has been 



reported for the synthesis superhydrophobic powders. By contrast, samples recovered from 

the first step     (HME-1) have not fulfilled the required conditions for hydrophobicity. Note, 

however, that in order to be suitable for the silylation of any surface of silica based particle, it 

is essential for the SAM precursor to contact and bind to the particle surface without 

confronting any obstacle [9, 41]. It can be deduced that chemical contaminants like organic 

impurities and absorbed water have more profound effects for the samples with low percent 

silica content compared to that of the reported counterparts.  

The use of gradual calcination studies were performed, in which the change in percent 

silica content, particle size and surface area were screened according to various calcination 

temperatures in an attempt to optimize reaction conditions (See Supporting Information of 

Table S1). In agreement with previous reports,[9] calcination can be performed to eliminate 

organic contaminants and physically adsorbed water that can occupy the active features of the 

DE and interfere with the bonding of the SAM precursor to the DE surface. Table S1 shows 

the XRF, BET and particle size results of DE minerals calcinated at different temperatures. 

As seen in Table S1, the amount of silica (SiO2) and other oxide compounds increased with 

an increase of calcination temperatures whilst the surface area decreases. It’s known that 

customization of the surface to load hydrophobicity entails keeping high specific surface area 

and excess amount of active features such as silica with eliminated contaminantsand 

physisorbed water. In  light of this information and recent studies,[22-24] DE calcinated at 

400 oC was considered to be the best conditions to fulfill the desired requirements (For SEM 

micrographs of DE particles, see Figure S4 of the Supporting Information).  

For the practice of efficacy of calcination on the surface modification of DE particles, 

the grafting procedure described in step 2 has been followed. Herein, the effect of grafting 

density on the water affinity of the diatomaceous has also been investigated. As specified 

before, the object is to see what happens when DE is functionalized with silane moieties with 



increasing grafting density in terms of water affinity.  Hence, thin films of these DE based 

specimens were readily developed on the surface of gold electrodes separated with a 3 m 

gap to compare the electrical properties of them in the presence of water molecules.  As seen 

in Figure 2, depicting adsorption and desorption characteristics of each material, the red, blue 

and green dashed lines represent the variations in the resistance of HME-blank, HME-2 and 

HME-3, respectively. The electrodes coated with these materials measured changes in the 

resistance due to adsorption and desorption of water vapour. The real-time relative humidity 

(RH) values in the test cell were simultaneously collected with a commercial Sensirion sensor 

during measurements.  This sensor displayed 15% RH when the test cell was purged with dry 

N2 while it became 86% RH with only wet N2 (obtained by sending dry N2 through a water 

bubbler kept at a constant room temperature). Dry and wet N2 was used consecutively in 200 

s periods in order to investigate the affinity of each electrode to water during adsorption 

process. When fully dry nitrogen was sent to the test cell, the maximum resistances of each 

material (R0) have been obtained as 2.47×108 Ω, 2.40×108 Ω and 2.38×108 Ω, respectively. 

The water affinity of each material has been defined as (R/R0), where R0 is initial 

(maximum) resistance of the film and R is the change in the resistance of the film[42]. The 

maximum response of each material has been found as 102.4%, 99.7% and 95.9%, 

respectively. As a consequence of the increase in the RH giving rise to an increase in the 

amount of adsorbed or capillary-condensed water molecules, the resistances of thin films of 

each material have decreased according to the experimental results. It has also been seen that 

the HME-blank has performed the highest affinity towards water molecules while this affinity 

has decreased as grafting density increased, leading us to consider that varying the grafting 

density could be the key parameter to tune the hydrophobic characteristic of relevant 

diatomaceous. 



To assess whether and how tunable hydrophobic surface are produced, DE powders 

were subjected to the grafting procedure defined in step 3. Grafting densities were rendered 

between the values indicated in step 2 to get more reliable results. In an attempt to optimize 

the analysis parameters and to evaluate a correlation between them, a comparative screening 

study was carried out. The data of the samples gathered from step 2 and step 3 were 

synergistically examined as well as their results from TGA weight loss, BET surface area, 

and contact angle measurements which are detailed in Table 2. It is significant to note that in 

addition to the surface coverage estimation from TGA analysis, a strong correlation between 

BET “C constant” and surface energy has previously been reported in the literature.[7, 43-46] 

The required features of hydrophobic materials are a low content of hydrophilic group due to 

high grafting density (as represented by TGA weight loss), and a low surface energy (a low 

BET “C constant”) giving rise to high contact angle. Therefore it is concluded that, for the 

samples with a high amount of fluoroalkyl grafting density on the particle surface, the higher 

the amount of percent weight loss in TGA will be and the lower the surface energy (the lower 

BET “C constant”) leading to gradual increase in static contact angle. A high specific surface 

area is another desired condition for surfaces to be liquid repellent as it demonstrates 

protection of multiscale surface roughness that is favorable for creating a solid-liquid-air 

interface. Nevertheless, the degree to which the surface area is altered during the concerted 

silane substitution is uncertain; however, it is anticipated to be as great as or lower than the 

“blank” sample.[7] 

According to Table 2, Figure 3 a, b and Figure 4, the HME-Blank underwent a modest  

8.20 % weight loss due to desorption of strongly bonded species or condensation of silanols, 

whereas percent weight loss gradually increases up to 18.92% in HME-3 owing to an 

increase in grafting density. This increase was also confirmed by the gradual decrease in BET 

“C constant” which proves that decreasing the surface energy increases the grafting density. 



Moreover, it is apparent from Figure 3b that there is a decrease in the increment of percent 

weight loss differences between the samples from HME-blank to HME-3. It is postulated that 

the surface of the DE particles started to saturate with an increase in grafting density and 

steric hindrance became more prominent due to the saturation. Specifically, a slight 

difference in percent weight loss between HME-4 and HME-3 is the most meaningful 

indicator of saturation. Further, this phenomenon is proved by the contact angle 

measurements that follow the same trend. The decrease in the rise of contact angle 

differences between the samples from HME-blank to HME-3 is attributed to a drop in the 

amount of free silanols on the surface of the particles, which bring about increasing 

wettability (for additional evaluation of surface modification, Figure S3a, b of Supporting 

Information can be seen) . 

 Other eligibility criteria of superhydrophobicity of particles are defined as having 

both contact angle hysteresis (CAH) and sliding angle (SA) < 10 [10, 12]. Dynamic contact 

angle analysis was carried out with water droplets by using both sliding (measurement on a 

slope) and extension-contraction methods (0,2 µL/s step increase and decrease) for different 

materials. As expected, “as received” DE and HME-Blank samples are completely wet. 

Nevertheless, HME-5 and HME-2 displayed inconclusive results during dynamic 

experiments. This is a consequence of low surface energy of DE particles during the addition 

of a water droplet on the functionalized DE surface that caused loosely adhered DE particles 

to come off the glass substrate and accumulate around/into the water beads. In some 

circumstances, water beads reached and wetted the surface of glass substrate. In agreement 

with the literature, this behavior is understandable in light of  the study on ‘‘liquid marbles’’ 

in which droplets of ionic liquid or high surface tension water are efficiently coated by 

particles having a low surface energy such as sub-micrometer oligomeric tetrafluoroethylene 

(OTFE) particles or hydrophobized silica.[47, 48] However, HME-4 and HME-3 did not 



display such unwanted behavior but instead they demonstrated strong adhesion with the glass 

substrate enabling measurement of dynamic contact angle. For the former one, the sliding 

technique (with a tilted angle of 7o) was carried out to measure the advancing-receding 

contact angles and the result is given in Figure 5a. The surface resulted in θadv/θrec = 

166.52/139.71 (CAH≈ 26.81). A large water bead stuck to substrate surface even with a tilt 

angle of 90o as seen in Figure 5b. The result obtained from sliding method was also 

confirmed with extension-contraction method, which gave rise to θadv/θrec = 166.17/139.98 

(CAH≈ 26.19) (see Figure 5c and d). A high contact angle hysteresis and a large water 

droplet stuck to substrate are indicators of a rough surface with complete wetting between the 

droplet and interface of the surface. For the latter one, a sliding method could not be used due 

to the fact that water beads rolled off the surface with even quite low tilt angle such that the 

measurement of a dynamic contact angle on an inclined surface (7o tilt angle) via dispensing 

10 µL droplet was not possible as the droplet spontaneously rolled off the surface (Video S1). 

To stabilize the water bead on the surface, both tilt angle and water droplet volume were 

decreased to 4o and 3.5 µL, respectively. Interestingly, the droplet did not dispense on the 

surface even though dispenser of the tensiometer was triggered several times (Video S2). As 

a final trial, the tilt angle and droplet volume were kept constant (4o, 3.5 µL) but the distance 

between the surface and dispenser was increased 2-fold. The droplet was seen rolling off the 

surface (Video S3). Therefore the extension-contraction method was preferred on a horizontal 

surface of HME-3 to conduct dynamic contact angle measurement. The surface resulted in 

θadv/θrec = 166.15/165.38 (CAH≈ 0.77) (see Figure 6a, b). This result is consistent with highly 

silylated and homogeneous surface with extensive fluoroalkyl content.    

Additional insight into low surface energy particles has been gained by varying silane 

structures and degree of functionality. Chloro-functional silanes were preferentially used over 

the alkoxy-functional silanes since previous studies have emphasized the importance of using 



chlorosilanes for direct substitution with surface silanols in the absence of water [7, 49]. 

However, excess amount of surface water has regularly been observed to contribute to 

silanols substitution via chloro- or alkoxy-functional groups [50-52] surface customization by 

grafting silanes in anhydrous conditions. This effect ought to minimize self-condensation of 

hydrolyzed silane agents that result in undesired side products [53, 54]. Another additional 

case reported in the literature is associated with the superiority of monochlorosilanes over 

multifunctional analogues in terms of producing a homogeneous monolayer with a lower 

silanols content as well as having the better water repellent character for precipitate silica [7]. 

Although  the surface of DE is more similar in composition to that of precipitated silica [9] 

monochlorosilane was utilized in between step 1-3 to investigate the effects of the 

aforementioned factors as well as in step 4 to explore the influence of the chain length and 

several silane structures. The silane modifiers were chosen according to their availability and 

the desire to maximize the sorts of silane structures. 

Further exploration of the key features of DE particles with respect to changing silane 

structures is examined in Step 4. For the samples grafted with fluoroalkyl silanes (PFDec-

MCS, PFOct-MCS and FHex-MCS), the contact angles undergo gradual decrease with 

decreasing chain length, indicating that the longer the fluoroalkyl chain length is, the higher 

the hydrophobicity that causes a gradual decrease in the surface energy (See Figure 7a-c). In 

accordance with the present result, the previous work has indicated that increasing 

fluoroalkyl chain length causes remarkable decrease in BET “C constant”, which also proves 

the lower surface energy and provides additional explanation for gradual decrease of contact 

angles [7]. For the elaboration of the effect of silane structures, DE particles were grafted 

with silane with a long alkyl chain. In this case, the hydrophobic features of Dodec-MCS 

(Figure 7d) is comparable to water-repellency properties obtained with the most fluorinated 

silane (PFDec-MCS). This finding is rather favorable from ecotoxic approach because recent 



studies revealed the persistence and bioaccumulation potential of fluorinated alkyl 

substances, which is the key challenge for bio inspired materials.[55-59] Compared with the 

fluoroalkyl chain, there is a considerable decrease in the contact angle with decreasing 

hydrocarbon chain length as expected (Figure 7e, f). 

Another comparative screening study concerning hydrophobicity was conducted to 

elucidate the effect of chain variation and degree of functionality of silane substances. 

Compared to Dodec-MCS, Mtcos-MCS displayed wettable characteristics in spite of having a 

branched and long hydrocarbon chain (Figure 8a). This result may be explained by the fact 

that the bulky structure of the used silane makes steric effects more dominant and inhibits its 

reaction that gives rise to remaining much of the silanols without substitution and 

significantly increased heterogeneity. As to Deca-BisTCS, it displayed higher hydrophilicity 

with respect to Dodec-MCS (Figure 8b). This result is in accord with recent literature [7] 

indicating that multifunctional silane treatment causes a higher amount of silanols to remain. 

Taken together, preparation conditions of inherent texture, ideal grafting density and 

reaction conditions have been optimized and applied to talc as depicted in step 5. Talc 

mineral, preferred on account of peculiar affinity towards water, performs either hydrophilic 

or hydrophobic behavior depending on relative humidity.[60] This dichotomy has been 

overcome through grafting the talc surface that has given rise to permanent water repellency. 

It is possible to state that the hypothesis posed at the beginning is confirmed by the findings 

indicated here i.e. that the static water contact angles of the samples were found to be in turn 

165o and 166o as depicted in Figure 9a, b. For the talc surface with grafting density of 10 

µmol/m2, the surface resulted in θadv/θrec = 159.25o /138.68o (CAH≈ 20.57) by sliding method 

(Figure 10). In addition to high contact angle hysteresis, the water bead was also attached to 

the surface at any tilt angle ranging between 0o and 90o. These are considered to stem from 



the rough surface with complete wetting between the water bead and surface interface, which 

may be attributed to Wenzel’s model describing homogeneous wetting regime.[10, 61] 

4. Conclusion 

Fluorocarbon-functional silanes were found to be the most effective modifiers to attain 

superhydrophobicity on surfaces of natural texture by comparison to hydrocarbon-functional 

silanes. The chemical content of the crude and calcinated minerals were investigated via XRF 

technique whereas the covalent attachment of silanes was illusidated by XPS method. Water 

affinity data of surface grafted particles showed that surface silanols were treatable to reach 

tunable wettability and to optimize grafting methodology. It can also be deduced that the 

proposed methodology could pave the way to be applied to other natural textures such as talc. 

According to thermogravimetric analysis, used to investigate grafting density, it can be 

concluded that as the amount of fluoroalkyl grafting density on the particle surface increased, 

the amount of percent weight loss in TGA is augmented. This phenomenon was also proven 

by both BET analysis and static contact angle measurements i.e. anincrease in grafting 

density gave rise to a decrease in the BET “C constant” (lower surface energy) which also led 

to a gradual increase in the static contact angle. The treatment with monofunctional 

chlorosilanes was found to provide better superhydrophobic properties than their 

multifunctional counterparts. Dynamic contact angle measurements resulted in low contact 

angle hysteresis and it was observed that the water bead rolled off the surface even with a 

small droplet volume at very low tilt angle for DE samples. However, as for talc, the water 

bead was attached to the surface at any tilt angle ranging between 0o and 90o and caused high 

contact angle hysteresis. This result is considered to be due to the rough surface with 

complete wetting between the water droplet and surface interface, which might be related to 

Wenzel’s model describing a homogeneous wetting regime. This study offers important 



insights into producing superhydrophobic surfaces and potential synergistic approach to be 

implemented to any proper inherent texture for the production of SH powders. 



Figures 

 

Figure 1. Silane modifiers used in this work 



 

 

Figure 2. Effect of Grafting Density on Water Affinity of Samples 

 

 

 

 

 

 

 

 



 

Figure 3. a) TGA Thermograms of PFOct-MCS grafted samples, b) Effect of PFOct-MCS 

grafting Density on TGA Weight Loss 

 

 

 

 

 

 

 



 

Figure 4. Effect of Grafting Density on Average Static Contact Angle 

 

 

 

 

 

 

 

 



 

Figure 5. Shape of Water Droplets Illustrating Wetting Behaviour of HME-4 a) Inclined Surface 

for Advancing and Receding Contact Angles, b) 10 µl of Water Droplet Pinned to the Surface of 

HME-4, c) Water Droplet Extended to 5 µl for Advancing Contact Angle, d) Water Droplet 

Contracted to 4 µl for Receding Contact Angle 



 

Figure 6. Shape of Water Droplets Illustrating Wetting Behaviour of HME-3 a) Water Droplet 

Extended to 5 µl for Advancing Contact Angle, b) Water Droplet Contracted to 4 µl for 

Receding Contact Angle 

 

 

 

 

 

 

 

 

 

 

 

        

        

                  



 

Figure 7. Changes in Water Contact Angle with regards to Different Silane Structures a) PFDec-

MCS Modified DE (HME-4), b) PFOct-MCS Modified DE (HME-6), c) FHex-MCS Modified 

DE (HME-7), d) Dodec-MCS Modified DE (HME-10), e) nBut-MCS Modified DE (HME-8), f) 

Ethyl-MCS Modified DE (HME-9) 



 

 

 

Figure 8. a) Effect of Chain Variation on Water Contact Angle (HME-9), b) Effect of Degree of 

Functionality on Water Contact Angle (HME-12) 



 

 

 

Figure 9. Water Contact Angles of PFDec-MCS Modified TALC a) HME-13, b) HME-14 



 

 

Figure 10. Dynamic Contact Angle Measurement of HME-14 



Tables 

Table 1. Summary of Surface Functionalized Minerals 

Sample Mineral Calcination (oC) Silane Grafting Density (µmol/m2) Step 

HME-Bare DE None None None - 

HME-Blank DE 400 None None - 

HME-1 DE None PFDec-MCS 5 1 

HME-2 DE 400 PFDec-MCS 5 2 

HME-3 DE 400 PFDec-MCS 10 2 

HME-4 DE 400 PFDec-MCS 7.5 3 

HME-5 DE 400 PFDec-MCS 2.5 3 

HME-6 DE 400 PFOct-MCS 7.5 4 

HME-7 DE 400 FHex-MCS 7.5 4 

HME-8 DE 400 nBut-MCS 7.5 4 

HME-9 DE 400 Ethyl-MCS 7.5 4 

HME-10 DE 400 Dodec-MCS 7.5 4 

HME-11 DE 400 Mtcos-MCS 7.5 4 

HME-12 DE 400 Deca-BisTCS 7.5 4 

HME-13 TALC 400 PFDec-MCS 7.5 5 

HME-14 TALC 400 PFDec-MCS 10 5 

 

 

Table 2. Influence of Reaction Parameters on Key Features of Treated DE Samples 

Sample Grafting Density 

(µmol/m2) 

% Weight 

Loss 

BET “C 

constant” 

BET Area 

m2/g 

Contact angle 

HME-Blank None 8.20 146 117 Wet 

HME-5 2.5 14.64 35 119 157o 

HME-2 5.0 17.29 25 86 163o  

HME-4 7.5 18.45 24 109 165.5o 

HME-3 10.0 18.92 21 83 166.5o 
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