537 research outputs found

    Slower recovery in space before collapse of connected populations

    Get PDF
    Slower recovery from perturbations near a tipping point and its indirect signatures in fluctuation patterns have been suggested to foreshadow catastrophes in a wide variety of systems. Recent studies of populations in the field and in the laboratory have used time-series data to confirm some of the theoretically predicted early warning indicators, such as an increase in recovery time or in the size and timescale of fluctuations. However, the predictive power of temporal warning signals is limited by the demand for long-term observations. Large-scale spatial data are more accessible, but the performance of warning signals in spatially extended systems needs to be examined empirically. Here we use spatially extended yeast populations, an experimental system with a fold bifurcation (tipping point), to evaluate early warning signals based on spatio-temporal fluctuations and to identify a novel spatial warning indicator. We found that two leading indicators based on fluctuations increased before collapse of connected populations; however, the magnitudes of the increases were smaller than those observed in isolated populations, possibly because local variation is reduced by dispersal. Furthermore, we propose a generic indicator based on deterministic spatial patterns, which we call ‘recovery length’. As the spatial counterpart of recovery time, recovery length is the distance necessary for connected populations to recover from spatial perturbations. In our experiments, recovery length increased substantially before population collapse, suggesting that the spatial scale of recovery can provide a superior warning signal before tipping points in spatially extended systems.United States. National Institutes of Health (NIH R00 GM085279-02)United States. National Institutes of Health (NIH DP2)Alfred P. Sloan FoundationNational Science Foundation (U.S.

    Non-Linear Interactions between Consumers and Flow Determine the Probability of Plant Community Dominance on Maine Rocky Shores

    Get PDF
    Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects

    Early warning signals of simulated Amazon rainforest dieback

    Get PDF
    Copyright © The Author(s) 2013. This article is published with open access at Springerlink.comWe test proposed generic tipping point early warning signals in a complex climate model (HadCM3) which simulates future dieback of the Amazon rainforest. The equation governing tree cover in the model suggests that zero and non-zero stable states of tree cover co-exist, and a transcritical bifurcation is approached as productivity declines. Forest dieback is a non-linear change in the non-zero tree cover state, as productivity declines, which should exhibit critical slowing down. We use an ensemble of versions of HadCM3 to test for the corresponding early warning signals. However, on approaching simulated Amazon dieback, expected early warning signals of critical slowing down are not seen in tree cover, vegetation carbon or net primary productivity. The lack of a convincing trend in autocorrelation appears to be a result of the system being forced rapidly and non-linearly. There is a robust rise in variance with time, but this can be explained by increases in inter-annual temperature and precipitation variability that force the forest. This failure of generic early warning indicators led us to seek more system-specific, observable indicators of changing forest stability in the model. The sensitivity of net ecosystem productivity to temperature anomalies (a negative correlation) generally increases as dieback approaches, which is attributable to a non-linear sensitivity of ecosystem respiration to temperature. As a result, the sensitivity of atmospheric CO2 anomalies to temperature anomalies (a positive correlation) increases as dieback approaches. This stability indicator has the benefit of being readily observable in the real world.NERCJoint DECC/Defra Met Office Hadley Centre Climate ProgrammeUniversity of Exete

    The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins

    Get PDF
    Background: Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. Principal Findings: In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Conclusions: Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers

    Early Warning Signals for Critical Transitions: A Generalized Modeling Approach

    Get PDF
    Critical transitions are sudden, often irreversible, changes that can occur in a large variety of complex systems; signals that warn of critical transitions are therefore highly desirable. We propose a new method for early warning signals that integrates multiple sources of information and data about the system through the framework of a generalized model. We demonstrate our proposed approach through several examples, including a previously published fisheries model. We regard our method as complementary to existing early warning signals, taking an approach of intermediate complexity between model-free approaches and fully parameterized simulations. One potential advantage of our approach is that, under appropriate conditions, it may reduce the amount of time series data required for a robust early warning signal

    Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers

    Get PDF
    Considerable evidence suggests that during the progression of complex diseases, the deteriorations are not necessarily smooth but are abrupt, and may cause a critical transition from one state to another at a tipping point. Here, we develop a model-free method to detect early-warning signals of such critical transitions, even with only a small number of samples. Specifically, we theoretically derive an index based on a dynamical network biomarker (DNB) that serves as a general early-warning signal indicating an imminent bifurcation or sudden deterioration before the critical transition occurs. Based on theoretical analyses, we show that predicting a sudden transition from small samples is achievable provided that there are a large number of measurements for each sample, e.g., high-throughput data. We employ microarray data of three diseases to demonstrate the effectiveness of our method. The relevance of DNBs with the diseases was also validated by related experimental data and functional analysis

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Motivation and treatment engagement intervention trial (MotivaTe-IT): The effects of motivation feedback to clinicians on treatment engagement in patients with severe mental illness

    Get PDF
    Background: Treatment disengagement and non-completion poses a major problem for the successful treatment of patients with severe mental illness. Motivation for treatment has long been proposed as a major determinant of treatment engagement, but exact mechanisms remain unclear. This current study serves three purposes: 1) to determine whether a feedback intervention based on the patients' motivation for treatment is effective at improving treatment engagement (TE) of severe mentally ill patients in outpatient psychiatric treatment, 2) to gather insight into motivational processes and pos
    corecore