875 research outputs found

    Galaxy And Mass Assembly (GAMA): The 325 MHz Radio Luminosity Function of AGN and Star Forming Galaxies

    Get PDF
    Measurement of the evolution of both active galactic nuclei (AGN) and star-formation in galaxies underpins our understanding of galaxy evolution over cosmic time. Radio continuum observations can provide key information on these two processes, in particular via the mechanical feedback produced by radio jets in AGN, and via an unbiased dust-independent measurement of star-formation rates. In this paper we determine radio luminosity functions at 325 MHz for a sample of AGN and star-forming galaxies by matching a 138 deg sq. radio survey conducted with the Giant Metrewave Radio Telescope (GMRT), with optical imaging and redshifts from the Galaxy And Mass Assembly (GAMA) survey. We find that the radio luminosity function at 325 MHz for star-forming galaxies closely follows that measured at 1.4 GHz. By fitting the AGN radio luminosity function out to z=0.5z = 0.5 as a double power law, and parametrizing the evolution as Φ(1+z)k{\Phi} \propto (1 + z)^{k} , we find evolution parameters of k=0.92±0.95k = 0.92 \pm 0.95 assuming pure density evolution and k=2.13±1.96k = 2.13 \pm 1.96 assuming pure luminosity evolution. We find that the Low Excitation Radio Galaxies are the dominant population in space density at lower luminosities. Comparing our 325 MHz observations with radio continuum imaging at 1.4 GHz, we determine separate radio luminosity functions for steep and flat-spectrum AGN, and show that the beamed population of flat-spectrum sources in our sample can be shifted in number density and luminosity to coincide with the unbeamed population of steep-spectrum sources, as is expected in the orientation based unification of AGN

    Visualizing the orientational dependence of an intermolecular potential

    Get PDF
    Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C₆₀) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard–Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation

    Raman spectroscopy in head and neck cancer

    Get PDF
    In recent years there has been much interest in the use of optical diagnostics in cancer detection. Early diagnosis of cancer affords early intervention and greatest chance of cure. Raman spectroscopy is based on the interaction of photons with the target material producing a highly detailed biochemical 'fingerprint' of the sample. It can be appreciated that such a sensitive biochemical detection system could confer diagnostic benefit in a clinical setting. Raman has been used successfully in key health areas such as cardiovascular diseases, and dental care but there is a paucity of literature on Raman spectroscopy in Head and Neck cancer. Following the introduction of health care targets for cancer, and with an ever-aging population the need for rapid cancer detection has never been greater. Raman spectroscopy could confer great patient benefit with early, rapid and accurate diagnosis. This technique is almost labour free without the need for sample preparation. It could reduce the need for whole pathological specimen examination, in theatre it could help to determine margin status, and finally peripheral blood diagnosis may be an achievable target

    Genotypic Diversity Is Associated with Clinical Outcome and Phenotype in Cryptococcal Meningitis across Southern Africa.

    Get PDF
    Cryptococcal meningitis is a major cause of mortality throughout the developing world, yet little is known about the genetic markers underlying Cryptococcal virulence and patient outcome. We studied a cohort of 230 Cryptococcus neoformans (Cn) isolates from HIV-positive South African clinical trial patients with detailed clinical follow-up using multi-locus sequence typing and in vitro phenotypic virulence assays, correlating these data with clinical and fungal markers of disease in the patient. South African Cn displayed high levels of genetic diversity and locus variability compared to globally distributed types, and we identified 50 sequence types grouped within the main molecular types VNI, VNII and VNB, with 72% of isolates typed into one of seven 'high frequency' sequence types. Spatial analysis of patients' cryptococcal genotype was not shown to be clustered geographically, which might argue against recent local acquisition and in favour of reactivation of latent infection. Through comparison of MLST genotyping data with clinical parameters, we found a relationship between genetic lineage and clinical outcome, with patients infected with the VNB lineage having significantly worse survival (n=8, HR 3.35, CI 1.51-7.20, p=0.003), and this was maintained even after adjustment for known prognostic indicators and treatment regimen. Comparison of fungal genotype with in vitro phenotype (phagocytosis, laccase activity and CSF survival) performed on a subset of 89 isolates revealed evidence of lineage-associated virulence phenotype, with the VNII lineage displaying increased laccase activity (p=0.001) and ex vivo CSF survival (p=0.0001). These findings show that Cryptococcus neoformans is a phenotypically heterogeneous pathogen, and that lineage plays an important role in cryptococcal virulence during human infection. Furthermore, a detailed understanding of the genetic diversity in Southern Africa will support further investigation into how genetic diversity is structured across African environments, allowing assessment of the risks different ecotypes pose to infection

    A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans

    Get PDF
    Background The wild relatives of crops represent a major source of valuable traits for crop improvement. These resources are threatened by habitat destruction, land use changes, and other factors, requiring their urgent collection and long-term availability for research and breeding from ex situ collections. We propose a method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives as a means to guide efficient and effective collecting activities. Methodology/Principal Findings The methodology prioritizes among taxa based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex situ collections. Gap “hotspots”, representing priority target areas for collecting, are concentrated in central Mexico, although the narrow endemic nature of a suite of priority species adds a number of specific additional regions to spatial collecting priorities. Conclusions/Significance Results of the gap analysis method mostly align very well with expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such as the degree of relatedness to cultivated species (i.e. ease of use in crop breeding). Furthermore, results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ collections of the world's plant genetic resource

    Editorial Board

    Get PDF
    Source at http://dx.doi.org/10.1186/s12888-017-1345-8 Background: The duration of untreated psychosis is determined by both patient and service related factors. Few studies have considered the geographical accessibility of services in relation to treatment delay in early psychosis. To address this, we investigated whether treatment delay is co-determined by straight-line distance to hospital based specialist services in a mainly rural mental health context. Methods: A naturalistic cross-sectional study was conducted among a sample of recent onset psychosis patients in northern Norway (n = 62). Data on patient and service related determinants were analysed. Results: Half of the cohort had a treatment delay longer than 4.5 months. In a binary logistic regression model, straight-line distance was found to make an independent contribution to delay in which we controlled for other known risk factors. Conclusions: The determinants of treatment delay are complex. This study adds to previous studies on treatment delay by showing that the spatial location of services also makes an independent contribution. In addition, it may be that insidious onset is a more important factor in treatment delay in remote areas, as the logistical implications of specialist referral are much greater than for urban dwellers. The threshold for making a diagnosis in a remote location may therefore be higher. Strategies to reduce the duration of untreated psychosis in rural areas would benefit from improving appropriate referral by crisis services, and the detection of insidious onset of psychosis in community based specialist services
    corecore