995 research outputs found

    The small FNR regulon of Neisseria gonorrhoeae: comparison with the larger Escherichia coli FNR regulon and interaction with the NarQ-NarP regulon

    Get PDF
    BACKGROUND: Neisseria gonorrhoeae can survive during oxygen starvation by reducing nitrite to nitrous oxide catalysed by the nitrite and nitric oxide reductases, AniA and NorB. The oxygen-sensing transcription factor, FNR, is essential for transcription activation at the aniA promoter, and full activation also requires the two-component regulatory system, NarQ-NarP, and the presence of nitrite. The only other gene known to be activated by the gonococcal FNR is ccp encoding a cytochrome c peroxidase, and no FNR-repressed genes have been reported in the gonococcus. In contrast, FNR acts as both an activator and repressor involved in the control of more than 100 operons in E. coli regulating major changes in the adaptation from aerobic to anaerobic conditions. In this study we have performed a microarray-led investigation of the FNR-mediated responses in N. gonorrhoeae to determine the physiological similarities and differences in the role of FNR in cellular regulation in this species. RESULTS: Microarray experiments show that N. gonorrhoeae FNR controls a much smaller regulon than its E. coli counterpart; it activates transcription of aniA and thirteen other genes, and represses transcription of six genes that include dnrN and norB. Having previously shown that a single amino acid substitution is sufficient to enable the gonococcal FNR to complement an E. coli fnr mutation, we investigated whether the gonococcal NarQ-NarP can substitute for E. coli NarX-NarL or NarQ-NarP. A plasmid expressing gonococcal narQ-narP was unable to complement E. coli narQP or narXL mutants, and was insensitive to nitrate or nitrite. Mutations that progressively changed the periplasmic nitrate sensing region, the P box, of E. coli NarQ to the sequence of the corresponding region of gonococcal NarQ resulted in loss of transcription activation in response to the availability of either nitrate or nitrite. However, the previously reported ligand-insensitive ability of gonococcal NarQ, the "locked on" phenotype, to activate either E. coli NarL or NarP was confirmed. CONCLUSION: Despite the sequence similarities between transcription activators of E. coli and N. gonorrhoeae, these results emphasise the fundamental differences in transcription regulation between these two types of pathogenic bacteria

    Soliton molecules in trapped vector Nonlinear Schrodinger systems

    Full text link
    We study a new class of vector solitons in trapped Nonlinear Schrodinger systems modelling the dynamics of coupled light beams in GRIN Kerr media and atomic mixtures in Bose-Einstein condensates. These solitons exist for different spatial dimensions, their existence is studied by means of a systematic mathematical technique and the analysis is made for inhomogeneous media

    Performance of the combined zero degree calorimeter for CMS

    Get PDF
    The combined zero degree calorimeter (ZDC) is a combination of sampling quartz/tungsten electromagnetic and hadronic calorimeters. Two identical combined calorimeters are located in the LHC tunnel at CERN at the straight section 140 m on each side of the CMS interaction vertex and between the two beam pipes. They will detect very forward photons and neutrons. ZDC information can be used for a variety of physics measurements as well as improving the collision centrality determination in heavy-ion collisions. Results are presented for ZDC performance studies with the CERN SPS H2 test beam.The combined zero degree calorimeter (ZDC) is a combination of sampling quartz/tungsten electromagnetic and hadronic calorimeters. Two identical combined calorimeters are located in the LHC tunnel at CERN at the straight section ~140 m on each side of the CMS interaction vertex and between the two beam pipes. They will detect very forward photons and neutrons. ZDC information can be used for a variety of physics measurements as well as improving the collision centrality determination in heavy-ion collisions. Results are presented for ZDC performance studies with the CERN SPS H2 test beam

    Effective Field Theories on Non-Commutative Space-Time

    Get PDF
    We consider Yang-Mills theories formulated on a non-commutative space-time described by a space-time dependent anti-symmetric field ΞΌΜ(x)\theta^{\mu\nu}(x). Using Seiberg-Witten map techniques we derive the leading order operators for the effective field theories that take into account the effects of such a background field. These effective theories are valid for a weakly non-commutative space-time. It is remarkable to note that already simple models for ΞΌΜ(x)\theta^{\mu\nu}(x) can help to loosen the bounds on space-time non-commutativity coming from low energy physics. Non-commutative geometry formulated in our framework is a potential candidate for new physics beyond the standard model.Comment: 22 pages, 1 figur

    Events in a Non-Commutative Space-Time

    Full text link
    We treat the events determined by a quantum physical state in a noncommutative space-time, generalizing the analogous treatment in the usual Minkowski space-time based on positive-operator-valued measures (POVMs). We consider in detail the model proposed by Snyder in 1947 and calculate the POVMs defined on the real line that describe the measurement of a single coordinate. The approximate joint measurement of all the four space-time coordinates is described in terms of a generalized Wigner function (GWF). We derive lower bounds for the dispersion of the coordinate observables and discuss the covariance of the model under the Poincare' group. The unusual transformation law of the coordinates under space-time translations is interpreted as a failure of the absolute character of the concept of space-time coincidence. The model shows that a minimal length is compatible with Lorents covariance.Comment: 13 pages, revtex. Introductory part shortened and some arguments made more clea

    In Pursuit of New Physics with B_s Decays

    Get PDF
    The presence of a sizeable CP-violating phase in B_s^0-B_s^0-bar mixing would be an unambiguous signal of physics beyond the Standard Model. We analyse various possibilities to detect such a new phase considering both tagged and untagged decays. The effects of a sizeable width difference Delta Gamma between the B_s mass eigenstates, on which the untagged analyses rely, are included in all formulae. A novel method to find this phase from simple measurements of lifetimes and branching ratios in untagged decays is proposed. This method does not involve two-exponential fits, which require much larger statistics. For the tagged decays, an outstanding role is played by the observables of the time-dependent angular distribution of the B_s -> J/psi [-> l^+ l^-] \phi [-> K^+K^-] decay products. We list the formulae needed for the angular analysis in the presence of both a new CP-violating phase and a sizeable Delta Gamma, and propose methods to remove a remaining discrete ambiguity in the new phase. This phase can therefore be determined in an unambiguous way.Comment: minor changes, lattice prediction of Delta Gamma updated, appears in PR

    Determining the Phases alpha and gamma from Direct CP Violation in B_u, B_d and B_s Decays to Two Vectors

    Full text link
    A method for clean determination of the unitarity angles alpha and gamma is proposed that uses only direct CP violation and does not require any time dependent measurements. The method takes advantage of helicity amplitudes for B_u, B_d and B_s decay to two vector mesons and can be used, at any B-facility, in conjunction with a large number of modes. It also allows for experimental tests of theoretical approximations involved.Comment: 12 pages, no figure

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∌25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)−0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)−0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)−0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)−0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
    • 

    corecore