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1 Introduction

The rich phenomenology of non-leptonicB decays offers various strategies to explore the phase
structure of the Cabibbo–Kobayashi–Maskawa (CKM) matrix [1] and to search for manifestations
of physics beyond the Standard Model [2]. Concerning the latter aspect, CP violation inBs–Bs

mixing is a prime candidate for the discovery of non-standard physics. In the first place theBs–Bs

mixing amplitude is a highly CKM-suppressed loop-induced fourth order weak interaction process
and therefore very sensitive to new physics. Moreover in theStandard Model the mixing-induced
CP asymmetries in the dominantBs decay modes practically vanish, because they are governed by
the tiny phasearg(−VtbV ∗

ts/(VcbV
∗
cs)). It does not take much new physics to change this prediction:

already a fourth fermion generation1 can easily lead to a sizeable new CP-violating phase inBs–
Bs mixing [4]. It is further possible that there are new flavour-changing interactions which do not
stem from the Higgs-Yukawa sector. The phases of these couplings are not related to the phases
of the CKM elements and therefore induce extra CP violation.An example is provided by generic
supersymmetric models in which new flavour-changing couplings come from off-diagonal elements
of the squark mass matrix [5]. While such new contributions are likely to affect alsoBd–Bd mixing,
they appear in theBd system as a correction to a non-zero Standard Model prediction for the mixing-
induced CP asymmetry, which involves the poorly known phaseβ = arg(−VtbV ∗

td/(VcbV
∗
cd)). To

extract the new physics here additional information on the unitarity triangle must be used. In theBs

system, however, the new physics contribution is a correction to essentially zero [6].
Indeed, the discovery of new physics through a non-standardCP-violating phase inBs–Bs mix-

ing may be achievable before the LHCb/BTeV era, in Run-II of the Fermilab Tevatron.
Bs-meson decays into final CP eigenstates that are caused byb̄ → c̄cs̄ quark-level transitions

such asBs → D+
s D

−
s , J/ψ η(′) or J/ψ φ, are especially interesting [7–9]. Theη andη′ mesons in

Bs → J/ψ η(′) can be detected throughη → γγ andη′ → ρ0γ, π+π−η, or throughη → π+π−π0

[10]. These modes require photon detection. In the case ofBs → J/ψ[→ l+l−]φ[→ K+K−], which
is particularly interesting forB-physics experiments at hadron machines because of its niceexperi-
mental signature, the final state is an admixture of different CP eigenstates. In order to disentangle
them, an angular analysis has to be performed [11, 12]. Experimental attention is also devoted to
three-body final states [13].Bs-meson decays triggered by the quark decayb̄ → c̄ud̄ can likewise
access a CP-specific final state, e.g. viaBs → D0

CP+[→ K+K−]KS, with a likewise negligibly small
CP-violating phase in the Standard Model. The key point hereis that there are many different decay
modes which all contain the same information on the pursued new CP-violating phaseφ. Further-
more, additional information onφ can be gained from analyses that require no tagging. Untagged
studies determine| cosφ| and are superior to tagged analyses in terms of efficiency, acceptance and
purity. However, they require a sizeable width difference|∆Γ| between theBs mass eigenstates. On
the other hand, from tagged analyses (such as CP asymmetries) sinφ can be extracted, if the rapid
Bs–Bs oscillation can be resolved. Both avenues should be pursuedand their results combined,

1 This scenario is still possible, though somewhat disfavoured by electroweak precision data [3].
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because they measure the same fundamental quantities.
If we denote the Standard Model and the new physics contributions to theBs–Bs mixing am-

plitude withSSM andSNP, respectively, then the measurement of the mass difference∆m in theBs

system determines|SSM + SNP|. The knowledge of both∆m and theBs–Bs mixing phaseφ then
allows to solve for both the magnitude and phase ofSNP. Information onφ is especially valuable, if
|SSM| and|SNP| are comparable in size and∆m agrees within a factor of 2 or 3 with the Standard
Model prediction.

The purpose of this paper is twofold: we first identify usefulmeasurements and show how the
information from different decay modes and different observables can be combined in pursuit of a
statistically significant “smoking gun” of new physics. Second we show how theBs–Bs mixing
phase can be identified unambiguously, without discrete ambiguities. The outline is as follows: after
setting up our notation in Section 2 we consider untaggedBs decays and discuss various methods
to determine| cosφ| in Section 3. TaggedBs decays are discussed in Section 4, whereas Section 5
shows how to resolve the discrete ambiguity inφ. Finally, we conclude in Section 6.

2 Preliminaries

In this section we define the various quantities entering thetime evolution ofBs mesons and their
decay amplitudes. We closely follow the notation of theBABAR-Book [1]. Some of the discussed
quantities depend on phase conventions and enter physical observables in phase-independent combi-
nations [14]. Since this feature is well understood and extensively discussed in the standard review
articles [1], we here fix some of these phases for convenienceand only briefly touch this issue where
necessary.

We choose the following convention for the CP transformation of meson states and quark cur-
rents:2

CP |Bs 〉 = −|Bs 〉, CP qLγµbL (CP )−1 = −bLγµqL. (1)

Hence the CP eigenstates are

|Beven
s 〉 =

1√
2

(
|Bs 〉 − |Bs 〉

)
, and |Bodd

s 〉 =
1√
2

(
|Bs 〉 + |Bs 〉

)
. (2)

The time evolution of theBs–Bs system is governed by a Schrödinger equation:

i
d

dt

( |Bs(t) 〉
|Bs(t) 〉

)
=
(
M − i

Γ

2

)( |Bs(t) 〉
|Bs(t) 〉

)
(3)

with the mass matrixM = M † and the decay matrixΓ = Γ†. Here |Bs(t) 〉 denotes the state
of a meson produced as aBs at time t = 0, with an analogous definition for|Bs(t) 〉. The off-
diagonal elementsM12 = M∗

21 andΓ12 = Γ∗
21 correspond toBs–Bs mixing. In the Standard Model
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Figure 1: Bs–Bs mixing in the Standard Model.

the leading contributions toM12 and Γ12 stem from the box diagram in Fig. 1;Γ12 originates
from the real final states into which bothBs andBs can decay. It receives contributions from box
diagrams with lightu andc quarks. SinceΓ12 is dominated by CKM-favoured tree-level decays,
it is practically insensitive to new physics. On the other hand,M12 is almost completely induced
by short-distance physics. Within the Standard Model the top quarks in Fig. 1 give the dominant
contribution toBs–Bs mixing. This contribution is suppressed by four powers of the weak coupling
constant and two powers of|Vts| ≃ 0.04. Hence new physics can easily compete with the Standard
Model and possibly even dominateM12. If the non-standard contributions toM12 are unrelated to
the CKM mechanism of the three-generation Standard Model, they will affect the mixing phase

φM = argM12.

With our convention (1) the Standard Model prediction isφM = arg(VtbV
∗
ts)

2.
The mass eigenstates at timet = 0, |BL 〉 and|BH 〉, are linear combinations of|Bs 〉 and|Bs 〉:

lighter eigenstate: |BL 〉 = p|Bs 〉 + q|Bs 〉

heavier eigenstate:|BH 〉 = p|Bs 〉 − q|Bs 〉, with |p|2 + |q|2 = 1. (4)

We denote the masses and widths of the two eigenstates withML,H andΓL,H and define

Γ =
1

τBs

=
ΓH + ΓL

2
, ∆m = MH −ML, ∆Γ = ΓL − ΓH . (5)

While ∆m > 0 by definition,∆Γ can have either sign. Our sign convention is such that∆Γ > 0 in
the Standard Model. By examining the eigenvalue problem ofM−iΓ/2 we find that the experimental
information∆m ≫ Γ model-independently implies|Γ12| ≪ |M12|. By expanding the eigenvalues
andq/p in Γ12/M12, we find

∆m = 2|M12|, ∆Γ = 2 |Γ12| cosφ and
q

p
= −e−iφM

[
1 − a

2

]
. (6)

2metricgµν = (1,−1,−1,−1)
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Here the phaseφ is defined as

M12

Γ12

= −
∣∣∣∣
M12

Γ12

∣∣∣∣ e
iφ. (7)

In (6) we have kept a correction in the small parameter

a =
∣∣∣∣
Γ12

M12

∣∣∣∣ sin φ, (8)

but neglected all terms of orderΓ2
12/M

2
12 and do so throughout this paper. Sincea can hardly exceed

0.01 we will likewise set it to zero in our studies ofBs decays into CP eigenstates and only briefly
discuss a non-zeroa in sect. 3.4.

The phaseφ is physical and convention-independent; ifφ = 0, CP violation in mixing vanishes.
In the Standard Modelφ = φM − arg(−Γ12) is tiny, of order 1%. This is caused by two effects:
first, Γ12 is dominated by the decayb → ccs and (VcbV

∗
cs)

2 is close to theBs–Bs mixing phase
arg(VtbV

∗
ts)

2. Second, the small correction toarg(−Γ12) involving VubV ∗
us is further suppressed by a

factor ofm2
c/m

2
b . In the search for a sizeable new physics contribution toφ these doubly Cabibbo-

suppressed terms proportional toVubV ∗
us can safely be neglected, as we do throughout this paper.

For aBs decay into some final statef , we introduce the|∆B| = 1 matrix elements

Af = 〈f |Bs 〉 and Af = 〈f |Bs 〉.
The key quantity for CP violation reads

λf =
q

p

Af
Af

. (9)

The time evolution formulae and the expressions for the CP asymmetries in the forthcoming sections
can be conveniently expressed in terms of

Adir
CP =

1 − |λf |2

1 + |λf |2
, Amix

CP = − 2 Imλf

1 + |λf |2
and A∆Γ = − 2 Reλf

1 + |λf |2
. (10)

If f is a CP eigenstate,CP | f 〉 = ±| f 〉, thenAdir
CP 6= 0 or Amix

CP 6= 0 signals CP violation: a non-
vanishingAdir

CP implies |Af | 6= |Af |, meaning direct CP violation;Amix
CP measures mixing-induced

CP violation in the interference ofBs → f andBs → f . The third quantity,A∆Γ, plays a role, if
∆Γ is sizeable. The three quantities obey the relation

∣∣∣Adir
CP

∣∣∣
2
+
∣∣∣Amix

CP

∣∣∣
2
+ |A∆Γ|2 = 1.

The time-dependent decay rateΓ(Bs(t) → f) of an initially taggedBs into some final statef is
defined as

Γ(Bs(t) → f) =
1

NB

dN(Bs(t) → f)

dt
. (11)
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Quark decay Hadronic decay Remarks

b → ccs Bs → ψφ
Bs → ψK(∗)K(∗)

Bs → ψφφ
Bs → ψη
Bs → ψη′

Bs → ψf0 CP-odd final state
Bs → χc0φ CP-odd final state
Bs → D(∗)

s
+D(∗)

s
− D+

s D
−
s is CP-even

Bs → D(∗)+D(∗)− orD(∗)0D(∗)0 non-spectator decays,
DD is CP-even

b→ cud Bs → KSD
(∗)0 [→ φKS, ρ0KS,KK or π+π−]

Table 1: Some CKM-favouredBs decay modes into CP-specific final states. Here,ψ representsJ/ψ
or ψ(2S). Decays into two vector particles or into three-body final states with one or more vector
particles require an angular analysis to separate the CP-even from the CP-odd component. The final
statesD±

s D
∗
s
∓ are dominantly CP-even [16] (see sect. 3).

HereBs(t) represents a meson at proper timet tagged as aBs at t = 0; dN(Bs(t) → f) denotes the
number of decays ofBs(t) into the final statef occurring within the time interval[t, t + dt]; NB is
the total number ofBs’s produced at timet = 0. An analogous definition holds forΓ(Bs(t) → f).
By solving the Schrödinger equation (3) using (6), we can find these decay rates [15]:

Γ(Bs(t) → f) = Nf |Af |2
1 + |λf |2

2
e−Γt

×
[
cosh

∆Γ t

2
+ Adir

CP cos(∆mt) + A∆Γ sinh
∆Γ t

2
+ Amix

CP sin (∆mt)
]
,(12)

Γ(Bs(t) → f) = Nf |Af |2
1 + |λf |2

2
(1 + a) e−Γt

×
[
cosh

∆Γ t

2
−Adir

CP cos(∆mt) + A∆Γ sinh
∆Γ t

2
−Amix

CP sin(∆mt)
]
. (13)

HereNf is a time-independent normalization factor.
A promising testing ground for new physics contributions toφM are decays into CP eigenstates

triggered by the quark decayb → ccs. Table 1 summarizes such CP-specificBs decay modes. To
estimate the size of the small Standard Model predictions consider first the decay amplitudes [17]:

Af , Af ∝
[
1 +

(
λ2

1 − λ2

)
ap e

iθ e±iγ
]
. (14)



6 In Pursuit of New Physics withBs Decays

Hence the weak phase factoreiγ , which is associated with the quantityape
iθ, is strongly Cabibbo-

suppressed by two powers of the Wolfenstein parameterλ ≃ |Vus| ≃ 0.22 [18]. The “penguin
parameter”ape

iθ measures – sloppily speaking – the ratio of penguin- to tree-diagram-like topologies
and is loop-suppressed. Since new-physics contributions to these decay amplitudes have to compete
with a tree diagram, they are not expected to play a significant role. A detailed discussion for a
left–right-symmetric model can be found in [9]. Since we areinterested in large “smoking gun”
new physics effects inBs–Bs mixing, we account for the Standard Model contributions within
the leading order ofλ and set|Af | = |Af |, neglecting direct CP violation. With the weak phase
φccs = arg(VcbV

∗
cs) one then finds

Af
Af

= −ηfe2iφccs. (15)

Hereηf denotes the CP parity off : CP | f 〉 = ηf | f 〉. In Table 1 we also included decay modes
driven by the quark level decayb→ cud. The weak phase of these modes involves the phases of the
K andD decay amplitudes into CP eigenstates. The phases combine toarg(VcbV

∗
ud)+arg(VudV

∗
us)+

arg(VusV
∗
cs) = arg(VcbV

∗
cs), i.e. the same result as forb→ ccs. With (6) and (15)λf reads

λf =
q

p

Af
Af

= ηf e
−iφ. (16)

Here we have identified the phasearg(ηfλf ) = φM − 2φccs with the phaseφ defined in (7). This is
possible, becausearg(−Γ12) = 2φccs+O(λ2) and we neglect the Cabibbo-suppressed contributions.
The Standard Model contribution toφ = φSM+φNP equalsφSM = −2ηλ2. Hereη is the Wolfenstein
parameter measuring the height of the unitarity triangle. Since our focus is a sizeable new physics
contributionφNP, we can safely neglectφSM and identifyφ with φNP in the following. That is, we
neglect terms of orderλ2 and higher. Using (16) the quantities in (10) simplify to

Adir
CP = 0, Amix

CP = ηf sin φ and A∆Γ = −ηf cos φ. (17)

The corrections to (17) from penguin effects can be found in [17]. We next specify to the PDG
phase convention for the CKM matrix [19], in whicharg(VcbV

∗
cs) = O(λ6). Then we can setφccs to

zero and identify

φM = φ.

With this convention the mass eigenstates can be expressed as

|BL 〉 =
1 + eiφ

2
|Beven

s 〉− 1 − eiφ

2
|Bodd

s 〉 + O(a),

|BH 〉 = − 1 − eiφ

2
|Beven

s 〉 +
1 + eiφ

2
|Bodd

s 〉 + O(a) . (18)

Whenever we useBeven
s andBodd

s we implicitly refer to this phase convention. If formulae involving
Beven
s andBodd

s are used to constrain models with an extended quark sector, the phase convention
used for the enlarged CKM matrix must likewise be chosen suchthatarg(VcbV

∗
cs) ≃ 0.
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3 Untagged Studies

3.1 Time Evolution

Whereas the width difference∆Γ is negligibly small in theBd system, it can be sizeable forBs

mesons. This has the consequence that the untaggedBs data sample bears information on CP vio-
lation [20]. Further the width difference itself is sensitive to theBs–Bs mixing phaseφ [21], as we
can see from (6).

WhenBs’s andBs’s are produced in equal numbers, the untagged decay rate forthe decayBun
s →

f reads

Γ[f, t] = Γ(Bs(t) → f) + Γ(Bs(t) → f)

= Nf

[
e−ΓLt |〈f |BL 〉|2 + e−ΓH t |〈f |BH 〉|2

]
+ O(a). (19)

= Nf |Af |2
[
1 + |λf |2

]
e−Γt

{
cosh

∆Γ t

2
+ sinh

∆Γ t

2
A∆Γ

}
+ O(a). (20)

Here the second expression is simply obtained by adding (12)and (13). In (19) the same result is
expressed in terms of the mass eigenstates and nicely exhibits how the decay is governed by two
exponentials. Using (11) we can relate the overall normalization to the branching ratio:

Br[f ] =
1

2

∫ ∞

0
dt Γ[f, t] (21)

=
Nf

2
|Af |2

[
1 + |λf |2

] Γ + A∆Γ ∆Γ/2

Γ2 − (∆Γ/2)2
+ O(a). (22)

Conforming with [19] we have normalized the event counting toNB+NB = 2NB, so thatBr[all] =
1. Using (22) we rewrite (20) as

Γ[f, t] = 2Br[f ]
Γ2 − (∆Γ/2)2

Γ + A∆Γ ∆Γ/2
e−Γt

[
cosh

∆Γ t

2
+ sinh

∆Γ t

2
A∆Γ

]
+ O(a). (23)

Now (23) is our master equation for the time evolution of the decay of an untaggedBs sample. If
Γ = 1/τBs

is known, one could perform a two-parameter fit of the decay distribution to (23) and
determine∆Γ andA∆Γ. The latter determinesφ through (17), iff is a CP eigenstate from a CKM-
favoured decay. In practice, however, most data come from short times with∆Γ t ≪ 1, and one is
only sensitive to the product∆Γ · A∆Γ:

Γ[f, t] = 2Br[f ] Γ e−Γt
[
1 +

∆Γ

2
A∆Γ

(
t− 1

Γ

)]
+ O

(
(∆Γ t)2

)
. (24)

We return to this point in sect. 3.3.
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3.2 The Width Difference ∆Γ and Branching Ratios

The mass matrixM12 and the decay matrixΓ12 provide three rephasing invariant quantities:|M12|,
|Γ12| and the relative phaseφ. In (6) we have related the two observables∆m and∆Γ to |M12|,
|Γ12| andφ. Interestingly, it is possible to find a third observable, which determines|Γ12| and thus
encodes additional information. We define

∆ΓCP ≡ 2|Γ12| = 2
∑

f∈Xcc

[Γ(Bs → fCP+) − Γ(Bs → fCP−)] . (25)

HereXcc represents the final states containing a(c, c) pair, which constitute the dominant contribu-
tion to∆ΓCP stemming from the decayb → ccs. In (25) we have decomposed any final statef into
its CP-even and CP-odd component,| f 〉 = | fCP+ 〉 + | fCP− 〉 and defined

Γ(Bs → fCP±) = Nf |〈 fCP± |Bs〉|2 =
|〈 fCP± |Bs〉|2
|〈 f |Bs〉|2

Γ(Bs → f).

Nf is the usual normalization factor originating from the phase-space integration. In order to prove
the second equality in (25) we start from the definition ofΓ12:

Γ12 =
∑

f

Nf 〈Bs |f〉〈 f |Bs〉 =
1

2

∑

f

Nf

[
〈Bs |f〉〈 f |Bs〉 + 〈Bs |f〉〈 f |Bs〉

]
. (26)

In the second equation we have paired the final state| f 〉 with its CP conjugate| f 〉 = −CP | f 〉. In
the next step we tradef for fCP+ andfCP− and use the CP transformation

〈 fCP± |Bs〉 = ∓ e2iφccs 〈 fCP± |Bs〉,

whereφccs = arg(VcbV
∗
cs) is the phase of theb → ccs decay amplitude, which dominatesΓ12. Then

(26) becomes

− e−2iφccs Γ12 =
∑

f∈Xcc

Nf

[
|〈 fCP+ |Bs〉|2 − |〈 fCP− |Bs〉|2

]

=
∑

f∈Xcc

[Γ(Bs → fCP+) − Γ(Bs → fCP−)] . (27)

Interference terms involving both〈 fCP+ |Bs〉 and〈 fCP− |Bs〉 drop out when summing the two terms
〈Bs |f〉〈 f |Bs〉 and〈Bs |f〉〈 f |Bs〉. In (27) both sides of the equation are rephasing-invariant. An
explicit calculation ofΓ12 reveals that the overall sign of the LHS of (27) is positive, which completes
the proof of (25).

Loosely speaking,∆ΓCP is measured by counting the CP-even and CP-odd double-charmfi-
nal states inBs decays. We specify this statement in the following and relate ∆ΓCP to mea-
sured observables in sect. 3.3.2. Our formulae become more transparent if we adopt the stan-
dard phase convention witharg(VcbV

∗
cs) ≃ 0 and use the CP-eigenstates defined in (2). With
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|Bs 〉 = (|Beven
s 〉 + |Bodd

s 〉)/
√

2 one easily finds from (27):

∆ΓCP = 2|Γ12| = Γ (Beven
s ) − Γ(Bodd

s ). (28)

Here the RHS refers to the total widths of the CP-even and CP-odd Bs eigenstates. We stress
that the possibility to relate|Γ12| to a measurable quantity in (25) crucially depends on the fact
that Γ12 is dominated by a single weak phase. For instance, the final stateK+K− is triggered
by b → uus and involves a weak phase different fromb → ccs. AlthoughK+K− is CP-even,
the decayBodd

s → K+K− is possible. An inclusion of such CKM-suppressed modes into(27)
would add interference terms that spoil the relation to measured quantities. The omission of these
contributions toΓ12 induces a theoretical uncertainty of order 5% on (28).

In the Standard Model the mass eigenstates in (18) coincide with the CP eigenstates (withBL =
Beven
s ) and∆ΓSM = ∆ΓCP. The effect of a non-zeroBs–Bs mixing phaseφ reduces∆Γ:

∆Γ = ∆ΓCP cosφ, (29)

while ∆ΓCP = 2|Γ12| is not sensitive to new physics. From the calculatedΓ12 we can predict to
which extentΓ (Beven

s ) exceedsΓ
(
Bodd
s

)
and this result does not change with the presence of a

non-zeroφ.
The theoretical prediction for∆ΓCP is known to next-to-leading order in bothΛQCD/mb [22] and

the QCD couplingαs [23]. It reads

∆ΓCP

Γ
=

(
fBs

245 MeV

)2

[ (0.234 ± 0.035)BS − 0.080 ± 0.020 ] . (30)

Here the coefficient ofBS has been updated tomb(mb)+ms(mb) = 4.3 GeV (in theMS scheme) and
fBs

is theBs meson decay constant. Recently the KEK–Hiroshima group succeeded in calculating
fBs

in an unquenched lattice QCD calculation with two dynamicalfermions [24]. The result isfBs
=

(245± 30) MeV.BS parametrizes the relevant hadronic matrix element, withBS = 1 in the vacuum
saturation approximation. A recent quenched lattice calculation has yieldedBS = 0.87 ± 0.09 [25]
for the MS scheme. A similar result has been found in [26]. This analysis, however, calculates
∆Γ after normalizing (30) to the measured mass difference in the Bd–Bd system. This method
involves|Vtd|, which is obtained from a global CKM fit and thereby relies on the Standard Model.
Since the target of our analysis is new physics, we cannot usethe numerical prediction for∆Γ
of [26]. At present, studies ofBS are a new topic in lattice calculations and we can expect substantial
improvements within the next few years. With these numbers one finds from (30):

∆ΓCP

Γ
= 0.12 ± 0.06. (31)

Here we have conservatively added the errors from the two lattice quantities linearly.
Since∆ΓCP is unaffected by new physics and∆ΓCP > 0, several facts hold beyond the Standard

Model: i) There are more CP-even than CP-odd final states inBs decays. ii) The shorter-lived mass
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eigenstate is always the one with the larger CP-even component in (18). Its branching ratio into a
CP-even final statefCP+ exceeds the branching ratio of the longer-lived mass eigenstate intofCP+, if
the weak phase of the decay amplitude is close toarg VcbV

∗
cs. Forcosφ > 0 BL has a shorter lifetime

thanBH , while for cosφ < 0 the situation is the opposite [21]. iii) Measurements basedon the
comparison ofbranching ratiosinto CP-specific final states determine∆ΓCP rather than∆Γ. Such
an analysis has recently been performed by the ALEPH collaboration [27]. ALEPH has measured

2Br[D(∗)
s

+D(∗)
s

−] = 0.26
+0.30
−0.15 (32)

and related it to∆ΓCP. For this the following theoretical input has been used [16]:

i) In the heavy quark limitmc → ∞ and neglecting certain terms of order1/Nc (whereNc = 3
is the number of colours) the decayBodd

s → D±
s D

∗
s
∓ is forbidden. Hence in this limit the final

state inBun
s → D±

s D
∗
s
∓ is CP-even. Further inBun

s → D∗
s
+D∗

s
− the final state is in an S-wave.

ii) In the Shifman–Voloshin (SV) limitmc → ∞ with mb − 2mc → 0 [28], ∆ΓCP is saturated
by Γ(Bun

s → D(∗)
s

+D(∗)
s

−). With i) this implies that in the considered limit the width of Bodd
s

vanishes. ForNc → ∞ and in the SV limit,2Γ(Bun
s → D(∗)

s
+D(∗)

s
−) further equals the parton

model result for∆ΓCP (quark-hadron duality).

IdentifyingΓ(Beven
s → D(∗)

s
+D(∗)

s
−) ≃ ∆ΓCP andΓ(Bodd

s → D(∗)
s

+D(∗)
s

−) ≃ 0 we find:

2Br[D(∗)
s

+D(∗)
s

−] ≃ ∆ΓCP

[
1 + cosφ

2 ΓL
+

1 − cosφ

2 ΓH

]
=

∆ΓCP

Γ

[
1 + O

(
∆Γ

Γ

)]
. (33)

Thus the measurement in (32) is compatible with the theoretical prediction in (31). Forφ = 0,
the expression used in Ref. [27], in which the Standard Modelscenario has been considered, is
recovered. The term in square brackets accounts for the factthat in general the CP-even eigenstate
|Beven

s 〉 is a superposition of|BL 〉 and|BH 〉. It is straightforward to obtain (33): inserting (18) into
(19) expressesΓ[f, t] in terms ofΓ(Beven

s → f) andΓ(Bodd
s → f). After integrating over time the

coefficient ofΓ(Beven
s → f) is just the term in square brackets in (33).

When using (33) one should be aware that the corrections to the limits i) and ii) adopted in [16]
can be numerically sizeable. For instance, in the SV limit there are no multibody final states like
D(∗)
s DXs, which can modify (33). As serious would be the presence of a sizeable CP-odd component

of theD(∗)
s

+D(∗)
s

− final state, since it would be added with the wrong sign to∆ΓCP in (33). A method
to control the corrections to the SV limit experimentally isproposed in sect. 3.3.2. We further verify
from (33) that the measurement ofBr[D(∗)

s
+D(∗)

s
−] determines∆ΓCP. Its sensitivity to the new

physics phaseφ is suppressed by another factor of∆Γ/Γ and is irrelevant in view of the theoretical
uncertainties.

3.3 Determination of ∆Γ and | cosφ|

There are two generic ways to obtain information on∆Γ:
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i) The measurement of theBs lifetime in two decay modesBun
s → f1 andBun

s → f2 with
A∆Γ(f1) 6= A∆Γ(f2).

ii) The fit of the decay distribution ofBun
s → f to the two-exponential formula in (23).

As first observed in [21], the two methods are differently affected by a new physics phaseφ 6= 0.
Thus by combining the results of methods i) and ii) one can determineφ. In this section we consider
two classes of decays:

• flavour-specific decays, which are characterized byAf = 0 implyingA∆Γ = 0. Examples are
Bs → D−

s π
+ andBs → Xℓ+νℓ,

• the CP-specific decays of Table 1, withA∆Γ = −ηf cosφ.

In both cases the time evolution of the untagged sample in (23) is not sensitive to the sign of∆Γ (or,
equivalently, ofcosφ). For the CP-specific decays of Table 1 this can be seen by noticing that

A∆Γ sinh
∆Γ t

2
= − ηf | cosφ| sinh

|∆Γ| t
2

.

Here we have used the fact that∆Γ andcos φ always have the same sign, because∆ΓCP > 0. Hence
the untagged studies discussed here in sect. 3.3 can only determine| cosφ| and therefore lead to a
four-fold ambiguity inφ. The sign ambiguity incosφ reflects the fact that from the untagged time
evolution in (23) one cannot distinguish, whether the heavier or the lighter eigenstate has the shorter
lifetime (however, see sect. 5).

In order to experimentally establish a non-zero∆Γ from the time evolution in (23) one needs
sufficient statistics to resolve the deviation from a single-exponential decay law, see (24). As long as
we are only sensitive to terms linear in∆Γ t and∆Γ/Γ, we can only determineA∆Γ ∆Γ from (24).
A∆Γ ∆Γ vanishes for flavour-specific decays and equals−ηf∆Γ cos φ for CP-specific final states.
Hence from the time evolution alone one can only determine∆Γ cosφ in the first experimental
stage. This determination is discussed in sect. 3.3.1. Oncethe statistical accuracy is high enough to
resolve terms of order(∆Γ)2, one can determine both|∆Γ| and| cosφ|. Fortunately, the additional
information from branching ratios can be used to find|∆Γ| and| cosφ| without resolving quadratic
terms in∆Γ. The determination of|∆Γ| and| cosφ| is discussed in sect. 3.3.2.

3.3.1 Determination of Γ and ∆Γ cosφ

Lifetimes are conventionally measured by fitting the decay distribution to a single exponential. Con-
sider a decay which is governed by two exponentials,

Γ[f, t] + Γ[f, t]

2
= Ae−ΓLt + B e−ΓH t

= e−Γt
[
(A +B) cosh

∆Γt

2
+ (B −A) sinh

∆Γt

2

]
, (34)
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but fitted to a single exponential

F [f, t] = Γf e
−Γf t. (35)

In (34) we have averaged overf and its CP-conjugatef . Of course the coefficients depend on the
final state:A = A(f), B = B(f). A maximum likelihood fit of (35) converges to [31]

Γf =
A/ΓL +B/ΓH
A/Γ2

L +B/Γ2
H

. (36)

We expand this to second order in∆Γ:

Γf = Γ +
A− B

A+B

∆Γ

2
− 2AB

(A+B)2

(∆Γ)2

Γ
+ O

(
(∆Γ)3

Γ2

)
. (37)

In flavour-specific decays we haveA = B (see (23)). We see from (37) that here a single-exponential
fit determinesΓ up to corrections of order∆Γ2/Γ2.

Alternatively, one can use further theoretical input and exploit thatΓBs
/ΓBd

= 1 + O(1%) from
heavy quark symmetry [22, 29, 30]. This relation can therefore be used to pinpointΓ in terms of
the well-measuredBd lifetime. New physics in the standard penguin coefficients of the effective
∆B = 1 hamiltonian only mildly affectsΓBs

/ΓBd
[30]. The full impact of new physics onΓBs

/ΓBd
,

however, has not been studied yet.
With (23) and (34) we can read offA andB for the CP-specific decays of Table 1 and find

A(fCP+)/B(fCP+) = (1 + cosφ)/(1 − cosφ) andA(fCP−)/B(fCP−) = (1 − cosφ)/(1 + cos φ)
for CP-even and CP-odd final states, respectively. Our key quantity for the discussion of CP-specific
decaysBun

s → fCP is

∆Γ′
CP ≡ −ηfA∆Γ ∆Γ = ∆Γ cos φ = ∆ΓCP cos2 φ. (38)

With this definition (37) reads for the decay rateΓCP,ηf measured inBun
s → fCP:

ΓCP,ηf = Γ + ηf
∆Γ′

CP

2
− sin2 φ

(∆Γ)2

2Γ
+ O

(
(∆Γ)3

Γ2

)
.

That is, to first order in∆Γ, comparing theBun
s lifetimes measured in a flavour-specific and a CP-

specific final state determines∆Γ′
CP. Our result agrees with the one in [21], which has found (38)

by expanding the time evolution in (34) and (35) for small∆Γ t. Including terms of order(∆Γ)2,
lifetime measurements in a flavour-specific decayBun

s → ffs determine [31]:

Γfs = Γ − (∆Γ)2

2Γ
+ O

(
(∆Γ)3

Γ2

)
.
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This impliesΓfs < Γ. Despite the heavy quark symmetry predictionΓBs
/ΓBd

≃ 1, a large∆Γ leads
to an excess of theBs lifetime measured inBun

s → ffs over theBd lifetime [31]. From (37) one finds

ΓCP,ηf − Γfs =
∆Γ′

CP

2

(
ηf +

∆Γ′
CP

Γ

)
+ O

(
(∆Γ)3

Γ2

)
. (39)

Hence for a CP-even (CP-odd) final state the quadratic corrections enlarge (diminish) the difference
between the two measured widths. A measurement of∆Γ′

CP at Run-II of the Tevatron seems to be
feasible. The lifetime measurement in the decay modeBun

s → J/ψφ has been studied in simulations
[32, 33]. This decay mode requires an angular analysis to separate the CP-odd (P-wave) from the
CP-even (S-wave and D-wave) components. The angular analysis is discussed in sect. 4.2. With
2 fb−1 integrated luminosity CDF expects 4000 reconstructedBun

s → J/ψ[→ µµ]φ events and
a measurement of∆Γ′

CP/Γ with an absolute error of 0.052. This simulation assumes that Γ −
(∆Γ)2/(2Γ) (see (37)) will be measured from flavour-specific decays withan accuracy of 1% [33]
and uses the input∆Γ′

CP/Γ = 0.15. When combining this with other modes in Table 1 and taking
into account that an integrated luminosity of 10–20 fb−1 is within reach of an extended (up to 2006)
Run-II, the study of∆Γ′

CP at CDF looks very promising. The LHC experiments ATLAS, CMS and
LHCb expect to measure∆Γ′

CP/Γ with absolute errors between 0.012 and 0.018 for∆Γ′
CP/Γ = 0.15

[34]. An upper bound on∆Γ′
CP would be especially interesting. If the lattice calculations entering

(31) mature and the theoretical uncertainty decreases, an upper bound on|∆Γ′
CP| may show that

φ 6= 0, π through

∆Γ′
CP

∆ΓCP

= cos2 φ. (40)

Note that conversely the experimental establishment of a non-zero∆Γ′
CP immediately helps to con-

strain models of new physics, because it excludes values ofφ aroundπ/2. This feature even holds
true, if there is no theoretical progress in (31).

The described method to obtain∆Γ′
CP can also be used, if the sample contains a known ratio

of CP-even and CP-odd components. This situation occurs e.g. in decays toJ/ψφ, if no angular
analysis is performed or in final states, which are neither flavour-specific nor CP eigenstates. We
discuss this case below in sect. 3.3.2 withBun

s → D±
s D

(∗)
s

∓. A measurement of theBs lifetime in
Bun
s → J/ψφ has been performed in [35], but the error is still too large togain information on∆Γ′

CP.
Note that the comparison of the lifetimes measured in CP-even and CP-odd final states determines
∆Γ′

CP up to corrections of order(∆Γ/Γ)3.

3.3.2 Determination of |∆Γ| and | cosφ|

The theoretical uncertainty in (31) dilutes the extractionof | cosφ| from a measurement of∆Γ′
CP

alone. One can bypass the theory prediction in (31) altogether by measuring both∆Γ′
CP and|∆Γ|

and determine| cosφ| through

∆Γ′
CP

|∆Γ| = | cosφ|. (41)



14 In Pursuit of New Physics withBs Decays

To obtain additional information on∆Γ andφ from the time evolution in (23) requires more statis-
tics: the coefficient oft in (24), ∆ΓA∆Γ/2, vanishes in flavour-specific decays and is equal to
−ηf∆Γ′

CP/2 in the CP-specific decays of Table 1. Therefore the data sample must be large enough
to be sensitive to the terms of order(∆Γ t)2 in order to get new information on∆Γ andφ. We now
list three methods to determine|∆Γ| and| cosφ| separately. The theoretical uncertainty decreases
and the required experimental statistics increases from method 1 to method 3. Hence as the collected
data sample grows, one can work off our list downwards. The first method exploits information from
branching ratios and needs no information from the quadratic (∆Γ t)2 terms.

Method 1: We assume that∆Γ′
CP has been measured as described in sect. 3.3.1. The method

presented now is a measurement of∆ΓCP using the information from branching ratios. With (40)
one can then find| cosφ| and subsequently|∆Γ| from (41). In the SV limit the branching ratio
Br[D(∗)

s
+D(∗)

s
−] equals∆ΓCP/(2Γ) up to corrections of order∆Γ/Γ, as discussed in sect. 3.2

[16]. Corrections to the SV limit, however, can be sizeable.Yet we stress that one can control the
corrections to this limit experimentally, successively arriving at a result which does not rely on the
validity of the SV limit. For this it is of prime importance todetermine the CP-odd component
of the final statesD±

s D
∗∓
s andD∗+

s D∗−
s . We now explain how the CP-odd and CP-even component

of any decayBun
s → f corresponding to the quark level transitionb → ccs can be obtained. This

simply requires a fit of the time evolution of the decay to a single exponential, as in (35). Define
the contributions of the CP-odd and CP-even eigenstate toBs → f :

Γ(Bodd
s → f) ≡ Nf |〈f |Bodd

s 〉|2, Γ(Beven
s → f) ≡ Nf |〈f |Beven

s 〉|2. (42)

It is useful to define the CP-odd fractionxf by

Γ(Bodd
s → f)

Γ(Beven
s → f)

=

∣∣∣〈f |Bodd
s 〉

∣∣∣
2

|〈f |Beven
s 〉|2

=

∣∣∣〈f |Bodd
s 〉

∣∣∣
2

∣∣∣〈f |Beven
s 〉

∣∣∣
2 =

xf
1 − xf

. (43)

The time evolution(Γ[f, t] + Γ[f, t])/2 of the CP-averaged untagged decayBun
s → f, f is governed

by a two-exponential formula:

Γ[f, t] + Γ[f, t]

2
= A(f) e−ΓLt +B(f) e−ΓHt. (44)

With (18) and (19) one finds

A(f) =
Nf

2
|〈f |BL 〉|2 +

Nf

2
|〈f |BL 〉|2

=
1 + cos φ

2
Γ(Beven

s → f) +
1 − cos φ

2
Γ(Bodd

s → f)
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B(f) =
Nf

2
|〈f |BH 〉|2 +

Nf

2
|〈f |BH 〉|2

=
1 − cosφ

2
Γ(Beven

s → f) +
1 + cos φ

2
Γ(Bodd

s → f). (45)

With (43) we arrive at

A(f)

B(f)
=

(1 + cos φ)Γ(Beven
s → f) + (1 − cos φ)Γ(Bodd

s → f)

(1 − cosφ)Γ(Beven
s → f) + (1 + cos φ)Γ(Bodd

s → f)
=

1 + (1 − 2xf ) cosφ

1 − (1 − 2xf ) cosφ
. (46)

In (45) and (46) it is crucial that we average the decay rates for Bun
s → f and the CP-conjugate

processBun
s → f . This eliminates the interference term〈Bodd

s |f〉〈 f |Beven
s 〉, so thatA(f)/B(f)

only depends onxf . The single exponential fit with (35) determinesΓf . Equations (37) and (46)
combine to give

2 (Γf − Γ) = (1 − 2xf ) ∆Γ cosφ = (1 − 2xf) ∆ΓCP cos2 φ = (1 − 2xf) ∆Γ′
CP (47)

up to corrections of order(∆Γ)2/Γ. In order to determinexf from (47) we need∆Γ′
CP from the

lifetime measurement in a CP-specific final state likeD+
s D

−
s or from the angular separation of the

CP components inBun
s → ψφ. The corrections of order(∆Γ)2/Γ to (47) can be read off from (37)

with (46) as well. Expressing the result in terms ofΓf and the rateΓfs measured in flavour-specific
decays, we find

1 − 2xf = 2
Γf − Γfs

∆Γ′
CP

[
1 − 2

Γf − Γfs

Γ

]
+ O

(
(∆Γ)2

Γ2

)
. (48)

In order to solve forΓ(Beven
s → f) andΓ(Bodd

s → f) we also need the branching ratioBr[f ]+Br[f ].
Recalling (22) one finds from (44) and (45):

Br[f ] +Br[f ] = Γ(Beven
s → f)

[
1 + cosφ

2ΓL
+

1 − cosφ

2ΓH

]

+ Γ(Bodd
s → f)

[
1 − cosφ

2ΓL
+

1 + cosφ

2ΓH

]
. (49)

By combining (43) and (49) we can solve for the two CP components:

Γ(Beven
s → f) =

[
Γ2 − (∆Γ/2)2

] (
Br[f ] +Br[f ]

) 1 − xf
2Γ − Γf

= (1 − xf )
(
Br[f ] +Br[f ]

)
Γ + O (∆Γ)

Γ(Bodd
s → f) =

[
Γ2 − (∆Γ/2)2

] (
Br[f ] +Br[f ]

) xf
2Γ − Γf

= xf
(
Br[f ] +Br[f ]

)
Γ + O (∆Γ) .
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From (28) we now find the desired quantity by summing over all final statesf :

∆ΓCP = Γ (Beven
s ) − Γ

(
Bodd
s

)
= 2

[
Γ2 − (∆Γ/2)2

] ∑

f∈Xcc

Br[f ]
1 − 2 xf
2Γ − Γf

(50)

= 2 Γ
∑

f∈Xcc

Br[f ] (1 − 2 xf )
[
1 + O

(
∆Γ

Γ

)]
. (51)

It is easy to find∆ΓCP: first determine1 − 2xf from (48) for each studied decay mode, then in-
sert the result into (50). The small quadratic term(∆Γ/2)2 = ∆ΓCP∆Γ′

CP/4 is negligible. This
procedure can be performed forBr[D±

s D
∗
s
∓] andBr[D∗

s
+D∗

s
−] to determine the corrections to the

SV limit. In principle the CP-odd P-wave component ofBr[D∗
s
+D∗

s
−] (which vanishes in the SV

limit) could also be obtained by an angular analysis, but this is difficult in first-generation experi-
ments at hadron colliders, because the photon fromD∗

s → Dsγ cannot be detected. We emphasize
that it is not necessary to separate theD(∗)

s
+D(∗)

s
− final states; our method can also be applied to

the semi-inclusiveD(∗)
s

±D(∗)
s

∓ sample, using∆Γ′
CP obtained from an angular separation of the CP

components inBun
s → ψφ. Further one can successively include those double-charm final states

which vanish in the SV limit into (50). If we were able to reconstruct allb → ccs final states, we
could determine∆ΓCP without invoking the SV limit. In practice a portion of thesefinal states will
be missed, but the induced error can be estimated from the corrections to the SV limit in the mea-
sured decay modes. By comparing∆ΓCP and∆Γ′

CP one finds| cosφ| from (40). The irreducible
theoretical error of method 1 stems from the omission of CKM-suppressed decays and is of order
2|VubVus/(VcbVcs)| ∼ 5%.

Method 1 is experimentally simple: at the first stage (relying on the SV limit) it amounts to
counting theBun

s decays intoD(∗)
s

+D(∗)
s

−. A first simulation indicates that CDF will be able to
separate theBs decay modes intoD+

s D
−
s , D∗±

s D∓
s andD∗+

s D∗−
s [36]. The corrections to the SV

limit are obtained by one-parameter fits to the time evolution of the collected double-charm data
samples. This sample may include final states from decay modes which vanish in the SV limit, such
as multiparticle final states. No sensitivity to(∆Γ t)2 is needed. A further advantage is that∆ΓCP is
not diminished by the presence of new physics.

Method 2: In the Standard Model the decay into a CP eigenstatefCP is governed by a single
exponential. If a second exponential is found in the time evolution of a CKM-favoured decayBun

s →
fCP, this will be clear evidence of new physics [20]. To this end we must resolve the time evolution
in (23) up to order(∆Γ t)2. At first glance this seems to require a three-parameter fit tothe data,
becauseΓ[f, t] in (23) depends onΓ, ∆Γ and (throughA∆Γ, see (17)) onφ. It is possible, however,
to choose these parameters in such a way that one of them enters Γ [fCP, t] at order(∆Γ)3, with
negligible impact. The fit parameters areΓ′ andY . They are chosen such that

Γ[fCP+, t] = 2Br[fCP+] Γ′e−Γ′t

[
1 + Y Γ′ t

(
−1 +

Γ′t

2

)
+ O

(
(∆Γ)3

)]
. (52)
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Here we have considered a CP-even final state, for which a lot more data are expected than for CP-
odd states. With (52) we have generalized the lifetime fit method described in sect. 3.3.1 to the order
(∆Γ t)2. A non-zeroY signals the presence of new physics. The fitted rateΓ′ andY are related to
Γ, ∆Γ andφ by

Y =
(∆Γ)2

4Γ′2
sin2 φ, Γ′ = Γ(1 − Y ) +

cosφ

2
∆Γ. (53)

Note that for| cosφ| = 1 the rateΓ′ equals the rate of the shorter-lived mass eigenstate and the
expansion in (52) becomes the exact single-exponential formula. After determiningΓ′ andY we
can solve (53) forΓ, ∆Γ andφ. To this end we need the widthΓfs measured in flavour-specific
decays. We find

|∆Γ| = 2
√

(Γ′ − Γfs)2 + Γ2
fsY

[
1 + O

(
∆Γ

Γ

)]
, Γ = Γfs +

(∆Γ)2

2Γ
+ O

((
∆Γ

Γ

)3
)

∆Γ′
CP = 2 [Γ′ − Γ (1 − Y )]

[
1 + O

((
∆Γ

Γ

)2
)]

, | sinφ| =
2Γ

√
Y

|∆Γ|
[
1 + O

(
∆Γ

Γ

)]
.(54)

The quantity∆Γ′
CP, which we could already determine from single-exponentialfits, is now found

beyond the leading order in∆Γ/Γ. By contrast,∆Γ and| sinφ| in (54) are only determined to the
first non-vanishing order in∆Γ/Γ.

In conclusion method 2 involves a two-parameter fit and needssensitivity to the quadratic term
in the time evolution. The presence of new physics can be invoked fromY 6= 0 and does not require
to combine lifetime measurements in different decay modes.

Method 3: Originally the following method has been proposed to determine |∆Γ| [20, 21]: The
time evolution of aBun

s decay into a flavour-specific final state is fitted to two exponentials. This
amounts to resolving the deviation ofcosh(∆Γ t/2) from 1 in (23) in a two-parameter fit forΓ and
|∆Γ|. If one adopts the same parametrization as in (52),Γ′ andY are obtained from (53) by replacing
φ with π/2. The best suited flavour-specific decay modes at hadron colliders areBun

s → D(∗)±
s π∓,

Bun
s → D(∗)±

s π∓π+π− andBun
s → D(∗)±

s Xℓ∓ν. Depending on the event rate in these modes, method
3 could be superior to method 2 in terms of statistics. On the other hand, to find the “smoking gun”
of new physics, the|∆Γ| obtained must be compared to∆Γ′

CP from CP-specific decays to prove
| cosφ| 6= 1 through (41). Since the two measurements are differently affected by systematic errors,
this can be a difficult task. First upper bounds on|∆Γ| using method 3 have been obtained in [37].

The L3 collaboration has determined an upper bound|∆Γ|/Γ ≤ 0.67 by fitting the time evolution
of fully inclusive decays to two exponentials [38]. This method is quadratic in∆Γ as well. The
corresponding formula for the time evolution can be simply obtained from (34) withA = ΓL and
B = ΓH .
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3.4 CP Violation in Mixing and Untagged Oscillations

In the preceding sections we have set the small parametera in (8) to zero. CP violation in mix-
ing vanishes in this limit. The corresponding “wrong-sign”CP asymmetry is measured in flavour-
specific decays and equals

afs =
Γ(Bs(t) → f) − Γ(Bs(t) → f)

Γ(Bs(t) → f) + Γ(Bs(t) → f)
= a for Af = 0 and |Af | = |Af |. (55)

A special case ofafs is the semileptonic asymmetry, wheref = Xℓ+ν. A determination ofa gives
additional information on the three physical quantities|M12|, |Γ12| andφ characterizingBs–Bs

mixing. Measuring∆m, ∆ΓCP, ∆Γ′
CP anda overconstrains these quantities.

The “right-sign” asymmetry vanishes:

Γ(Bs(t) → f) − Γ(Bs(t) → f) = 0 for Af = 0 and |Af | = |Af |. (56)

This implies that one can measureafs from untaggeddecays. This observation was already made
in [39]. It is easily verified from the sum of (12) and (13) thatto ordera the time evolution of
untagged decays exhibits oscillations governed by∆m. Sincea is small, one must be concerned to
which accuracy|Af | = |Af | holds in flavour-specific decays in the presence of new physics. For
example in left–right-symmetric extensions of the Standard Model, small CP-violating corrections
to the decay amplitude could eventually spoil this relationat the few per mille level. Further, a small
production asymmetryǫ = NB/NB − 1 also leads to oscillations in the untagged sample. To first
order in the small parametersa, ǫ and|Af |/|Af | − 1 one finds

auntfs =
Γ[f, t] − Γ[f, t]

Γ[f, t] + Γ[f, t]

=
|Af |2 − |Af |2
|Af |2 + |Af |2

+
a

2
− a+ ǫ

2

cos(∆mt)

cosh(∆Γt/2)
for Af = 0 and |Af | ≈ |Af |. (57)

For |Af | = |Af | and ǫ = 0 one recovers the formula derived in [39]. Note that the production
asymmetry betweenBs andBs cannot completely fake the effect of a non-zeroa in (57): while
both a 6= 0 and ǫ 6= 0 lead to oscillations, the offset from the constant term indicates new CP-
violating physics either inBs–Bs mixing (througha 6= 0) or in the studied decay amplitude (through
|Af | 6= |Af |). The latter effect, which is theoretically much less likely, can be tested inB± decays
and can therefore be disentangled froma 6= 0.

The ratio∆ΓCP/Γ ≤ 0.22 from (31) and the current experimental limit∆m ≥ 14.9 ps−1 [40]
imply that |a| ≤ 0.01. CDF expects sufficiently many reconstructedBun

s → D(∗)±
s π∓ andBun

s →
D(∗)±
s π∓π+π− events at Run-II after collecting 2 fb−1 of integrated luminosity to achieve a statistical

error at the few permille level. From (8) and (6) we can relatea to |∆Γ|, ∆m andφ:

a =
|∆Γ|
∆m

sin φ

| cosφ| .
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Note, however, that the measurement of the sign ofa determines the sign ofsinφ. This reduces the
four-fold ambiguity inφ from the measurement of| cosφ| to a two-fold one. It is interesting that,
at ordera, without tagging one can in principle gain information which otherwise requires tagged
studies. Of coursesinφ can be measured more directly from tagged decays, as discussed in the
forthcoming section 4.

4 Tagged Decays

4.1 The CP-Violating Observables ofBs → D+
s D

−
s and J/ψ η(′)

For aBs decay into a CP eigenstatef theBs–Bs oscillations lead to the following time-dependent
CP asymmetry:

aCP(t) ≡ Γ(Bs(t) → f) − Γ(Bs(t) → f)

Γ(Bs(t) → f) + Γ(Bs(t) → f)
= − Adir

CP cos(∆mt) + Amix
CP sin(∆mt)

cosh (∆Γ t/2) + A∆Γ sinh (∆Γ t/2)
. (58)

Here the mass and width difference∆m and∆Γ can be found in (5) andAdir
CP, Amix

CP andA∆Γ have
been defined in (10). We have set the small parametera in (8) to zero and will continue to do so. The
final statesBs → D+

s D
−
s , ψ η(′), ψf0 orχc0φ in Table 1 are CP eigenstates. Their CP eigenvalueηf

readsηD+
s D

−

s
= ηψη′ = ηψη = +1 andηψf0 =ηχc0φ = −1. With (17) we then find from (58):

aCP(t) = − ηf sin φ sin(∆mt)

cosh (∆Γ t/2) − ηf | cosφ| sinh (|∆Γ| t/2)
. (59)

Since∆Γ andcosφ have the same sign (see (29)) we could replace these quantities by their absolute
values in the denominator of (59). This displays that the ambiguity in the sign ofcosφ cannot
be removed by measuringaCP. Its measurement determinessinφ and leaves us with a two-fold
ambiguity inφ. Then we still do not know whether the heavier or lighter masseigenstate is shorter-
lived. The resolution of this ambiguity will be discussed inSection 5.

4.2 The CP-violating Observables ofBs → J/ψ φ and D∗+
s D∗−

s

The situation in the decayBs → J/ψ φ, which is very promising forB-physics experiments at
hadron machines because of its nice experimental signature, is a bit more involved than in the case
of the pseudoscalar–pseudoscalar modesBs → D+

s D
−
s andJ/ψ η(′), since the final state is an ad-

mixture of different CP eigenstates. In order to disentangle them, we have to make use of the angular
distribution of the decay products of the decay chainBs → J/ψ[→ l+l−]φ[→ K+K−], which can
be found in [11, 12]. In that paper, also appropriate weighting functions are given to extract the
observables of the angular distribution in an efficient way from the experimental data. For an ini-
tially, i.e. at timet = 0, presentBs-meson, the time-dependent angular distribution can be written
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generically as
f(Θ,Φ,Ψ; t) =

∑

k

O(k)(t) g(k)(Θ,Φ,Ψ), (60)

where we have denoted the angles describing the kinematics of the decay products ofJ/ψ → l+l−

andφ → K+K− by Θ, Φ andΨ. The observablesO(k)(t) describing the time evolution of the
angular distribution (60) can be expressed in terms of real or imaginary parts of certain bilinear
combinations of decay amplitudes. In the case of decays intotwo vector mesons, such asBs →
J/ψ φ, it is convenient to introduce linear polarization amplitudesA0(t), A‖(t) andA⊥(t) [41].
WhereasA⊥(t) describes a CP-odd final-state configuration, bothA0(t) andA‖(t) correspond to CP-
even final-state configurations. The observablesO(k)(t) of the corresponding angular distribution are
given by

|Af(t)|2 with f ∈ {0, ‖,⊥}, (61)

as well as by the interference terms

Re {A∗
0(t)A‖(t)} and Im {A∗

f (t)A⊥(t)} with f ∈ {0, ‖}. (62)

For our consideration, the time evolution of these observables plays a crucial role. In the case of the
observables (61), which correspond to “ordinary” decay rates, we obtain

|A0(t)|2 = |A0(0)|2e−Γt

[
cosh

∆Γ t

2
− | cosφ| sinh

|∆Γ| t
2

+ sin φ sin(∆mt)

]
(63)

|A‖(t)|2 = |A‖(0)|2e−Γt

[
cosh

∆Γ t

2
− | cosφ| sinh

|∆Γ| t
2

+ sin φ sin(∆mt)

]
(64)

|A⊥(t)|2 = |A⊥(0)|2e−Γt

[
cosh

∆Γ t

2
+ | cosφ| sinh

|∆Γ| t
2

− sinφ sin(∆mt)

]
, (65)

whereas we have in the case of the interference terms (62):

Re {A∗
0(t)A‖(t)} = |A0(0)| |A‖(0)| cos(δ2 − δ1) e

−Γt

×
[
cosh

∆Γ t

2
− | cosφ| sinh

|∆Γ| t
2

+ sinφ sin(∆mt)

]
(66)

Im {A∗
‖(t)A⊥(t)} = |A‖(0)| |A⊥(0)| e−Γt

×
[
sin δ1 cos(∆mt) − cos δ1 cosφ sin(∆mt) − cos δ1 sin φ sinh

∆Γ t

2

]
(67)

Im {A∗
0(t)A⊥(t)} = |A0(0)| |A⊥(0)| e−Γt

×
[
sin δ2 cos(∆mt) − cos δ2 cosφ sin(∆mt) − cos δ2 sin φ sinh

∆Γ t

2

]
.(68)
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In (66)–(68),δ1 andδ2 denote CP-conserving strong phases, which are defined as follows [11,12]:

δ1 ≡ arg
{
A‖(0)∗A⊥(0)

}
, δ2 ≡ arg

{
A0(0)∗A⊥(0)

}
. (69)

The time evolutions (63)–(68) generalize those given in [11, 12] to the case of a sizeableBs–Bs

mixing phaseφ to cover the pursued case of new physics. A further generalization taking into
account also the small penguin contributions can be found in[42]. It should be emphasized that new
physics manifests itselfonly in the observablesO(k)(t), while theg(k)(Θ,Φ,Ψ)’s are not affected.

We may use the same anglesΘ, Φ andΨ to describe the kinematics of the decay products of the
CP-conjugate transitionBs → J/ψ φ. Consequently, we have

f(Θ,Φ,Ψ; t) =
∑

k

O(k)
(t) g(k)(Θ,Φ,Ψ). (70)

Within this formalism, CP transformations relatingBs → [J/ψ φ]f toBs → [J/ψ φ]f (f ∈{0, ‖,⊥})

are taken into account in the expressions for theO(k)(t) andO(k)
(t), and do not affect the form of

the g(k)(Θ,Φ,Ψ). Therefore the same functionsg(k)(Θ,Φ,Ψ) are present in (60) and (70) (see

also [43,44]). The CP-conjugate observablesO(k)
(t) take the following form:

|A0(t)|2 = |A0(0)|2e−Γt

[
cosh

∆Γ t

2
− | cosφ| sinh

|∆Γ| t
2

− sinφ sin(∆mt)

]
(71)

|A‖(t)|2 = |A‖(0)|2e−Γt

[
cosh

∆Γ t

2
− | cosφ| sinh

|∆Γ| t
2

− sinφ sin(∆mt)

]
(72)

|A⊥(t)|2 = |A⊥(0)|2e−Γt

[
cosh

∆Γ t

2
+ | cosφ| sinh

|∆Γ| t
2

+ sinφ sin(∆mt)

]
(73)

Re {A∗
0(t)A‖(t)} = |A0(0)| |A‖(0)| cos(δ2 − δ1) e

−Γt

×
[
cosh

∆Γ t

2
− | cosφ| sinh

|∆Γ| t
2

− sinφ sin(∆mt)

]
(74)

Im {A∗
‖(t)A⊥(t)} = |A‖(0)| |A⊥(0)| e−Γt

×
[
− sin δ1 cos(∆mt) + cos δ1 cosφ sin(∆mt) − cos δ1 sinφ sinh

∆Γ t

2

]
(75)

Im {A∗
0(t)A⊥(t)} = |A0(0)| |A⊥(0)| e−Γt

×
[
− sin δ2 cos(∆mt) + cos δ2 cosφ sin(∆mt) − cos δ2 sinφ sinh

∆Γ t

2

]
.(76)



22 In Pursuit of New Physics withBs Decays

Note that one can determinesin δ1,2, cos(δ1 − δ2), sin φ, cos δi cosφ, ∆m and|∆Γ| from (63)-(76).
Usingcos(δ2 − δ1) = cos δ1 cos δ2 + sin δ1 sin δ2 in (66) and (74) one realizes that these equations
are invariant, if the signs ofcosφ, ∆Γ, andcos δ1,2 are flipped simultaneously. Hence an overall
two-fold sign ambiguity persists and the sign ofcosφ remains undetermined.

The time evolution of the full three-angle distribution of the products of the decay chainBs →
J/ψ[→ l+l−]φ[→ K+K−] provides many interesting CP-violating observables [12, 42]. The
expressions for three-angle angular distributions can be obtained by inserting (63-76) into Eqs. (64)
and (70) of [12].

The situation is considerably simplified in the case of the one-angle distribution, which takes the
following form [11,12]:

dΓ(t)

d cosΘ
∝ (|A0(t)|2 + |A‖(t)|2)

3

8
(1 + cos2 Θ) + |A⊥(t)|2 3

4
sin2 Θ . (77)

HereΘ describes the angle between the decay direction of thel+ and thez axis in theJ/ψ rest
frame; thez axis is perpendicular to the decay plane ofφ→ K+K−. With the help of this one-angle
distribution, the observables|A0(t)|2 + |A‖(t)|2 and|A⊥(t)|2, as well as their CP conjugates, can be
determined. They provide the following CP asymmetries:
[
|A0(t)|2 + |A‖(t)|2

]
−
[
|A0(t)|2 + |A‖(t)|2

]

[
|A0(t)|2 + |A‖(t)|2

]
+
[
|A0(t)|2 + |A‖(t)|2

] =
− sinφ sin(∆mt)

cosh(∆Γ t/2) − | cosφ| sinh(|∆Γ| t/2)
(78)

|A⊥(t)|2 − |A⊥(t)|2
|A⊥(t)|2 + |A⊥(t)|2 =

sinφ sin(∆mt)

cosh(∆Γ t/2) + | cosφ| sinh(|∆Γ| t/2)
. (79)

In contrast to these CP-violating observables, untagged data samples are sufficient to determine the
following quantities:

[
|A0(t)|2 + |A‖(t)|2

]
+
[
|A0(t)|2 + |A‖(t)|2

]

= 2
[
|A0(0)|2 + |A‖(0)|2

]
e−Γt

[
cosh

∆Γ t

2
− | cosφ| sinh

|∆Γ| t
2

]
(80)

|A⊥(t)|2 + |A⊥(t)|2 = 2 |A⊥(0)|2 e−Γt

[
cosh

∆Γ t

2
+ | cosφ| sinh

|∆Γ| t
2

]
. (81)

Sinceφ is tiny in the Standard Model, a striking signal of new-physics contributions toBs–Bs mixing
would be provided by a sizeablesinφ either from a fit of the tagged observables (63) – (68), (71) –
(76), or from the CP-violating asymmetries in (59), (78) and(79), or if the untagged observables
(80) and (81) should depend ontwoexponentials. Note that in (80) the coefficient ofsinh(|∆Γ| t/2)
is always negative. Phrased differently, the coefficient ofthe exponentialexp(−(Γ+ |∆Γ|/2)t) with
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the larger rate is always larger than the coefficient ofexp(−(Γ − |∆Γ|/2)t). In (81) the situation is
reversed. This feature can be used as an experimental consistency check, once∆Γ 6= 0 is established.

Let us finally note that the formalism developed in this subsection applies also to the modeBs →
D∗+
s D∗−

s , where the subsequent decay of theD∗±
s -mesons is predominantly electromagnetic, i.e.

D∗±
s → D±

s γ. The corresponding angular distribution can be found in [11, 12]. The analysis of this
decay requires the capability to detect photons and appearsto be considerably more challenging than
that ofBs → J/ψ φ, which is one of the “gold-plated” channels forB-physics experiments at hadron
machines. HigherDs resonances exhibiting all-charged final states, for instanceDs1(2536)+ →
D∗+[→ Dπ+]K, may be more promising in this respect [44]. If photon detection is not possible,
one can still distinguishD∗±

s ’s fromD±
s ’s through the energy smearing associated with the escaped

photon [36]. Then one can use the lifetime method introducedin sect. 3.3.2 to find the CP-odd
fractionx (∝ |A⊥(0)|2) and the CP-even fraction1−x (∝ |A0(0)|2 + |A‖(0)|2) of theD∗+

s D∗−
s data

sample through (47). Ifx 6= 1/2 there are still non-vanishing CP asymmetries, although they are
diluted by1 − 2x. The corresponding formula for the CP asymmetry of this weighted average of
CP-even and CP-odd final states can readily be obtained from (63)–(65) and (71)–(73):

Γ(Bs(t) → D∗+
s D∗−

s ) − Γ(Bs(t) → D∗+
s D∗−

s )

Γ(Bs(t) → D∗+
s D∗−

s ) + Γ(Bs(t) → D∗+
s D∗−

s )
=

−(1 − 2x) sinφ sin(∆mt)

cosh(∆Γ t/2) − (1 − 2x) | cosφ| sinh(|∆Γ| t/2)
. (82)

The same procedure can be done with theD±
s D

∗∓
s data sample or any other of the decay modes in

Table 1.
A complete angular analysis for the three-body decays in Table 1 is more involved than the

analysis forBs → ψφ. For example inBs → ψKSKS, the KS pair does not necessarily come
from a vector resonance and could be in an S- or D-wave or even have a larger angular momentum.
In such cases one might restrict oneself to a one-angle transversity analysis of [45] or even satisfy
oneself with the diluted asymmetries in (82).

5 The Unambiguous Determination of φ

While sinφ can be measured by conventional methods, this section showsthat evensign(cosφ) can
be determined. That determination is important for variousreasons. It is not only necessary for
a complete extraction of magnitude and phase of the new physics contributions toBs–Bs mixing,
φ must also be known to extract the CKM angleγ from Bs → D±

s K
∓. Even if sinφ is found to

be consistent with zero, the determination ofsign(cosφ) is necessary to distinguish the Standard
Model predictioncos φ ≃ 1 from cosφ ≃ −1. In the advent of new physics,sign(cosφ) completes
our knowledge aboutφ. There are several methods to extractcosφ.
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Method 1: The previous section revealed that angular correlation studies ofBs → ψφ determine

cos δi cosφ. (83)

Oncesign(cos δi) is known,sign(cosφ) follows immediately. The former can be deduced from
theory, once first-principle calculations ofδi have progressed sufficiently [46]. Alternatively, one
can infersign(cos δi) from their SU(3) counterparts occurring inBd → ψK∗[→ π0KS], ψρ

0, ψω
decays [denoted bysign(cos δ̂i)], as follows:

The angular correlations of thoseBd modes are sensitive to [12,45]

cos δ̂i cos 2β̃.

By applying the SU(3) relation

sign(cos δi) = sign(cos δ̂i),

the relative sign betweencos 2β̃ andcosφ can be determined, but not yet the absolute sign ofcos φ.
That absolute sign can be determined, since there are methods which extract theBd–Bd mixing
phase2β̃ unambiguously, even in the presence of new physics [47–51].In the absence of new
physics,β̃ equals the angleβ of the CKM unitarity triangle. In Ref. [52], basically the same approach
was used to determine the sign ofcos 2β̃. However, in that paper it was assumed thatφ is negligibly
small, as in the Standard Model. On the other hand, in method 1we assume that2β̃ is known
unambiguously, allowing the determination ofcosφ. Using a theoretical input [46] to determine
sign(cos δi) as noted above, the angular distribution of theBd → J/ψ(→ l+l−)K∗0(→ π0KS)
decay products considered in Ref. [52] also allows an unambiguous determination of2β̃ in the
presence ofφ 6= 0.

Method 2: Consider certain three- (orn-) body modesf that can be fed from both aBs and

a Bs, and where the
(−)

B s -decay amplitude is a sum over a non-resonant contribution and several
contributions via quasi two-body modes. The strong phase variation can be modelled by Breit-
Wigners and is known, so thatcosφ can be extracted. Such a method was suggested in determining
cos 2α andcos 2β̃ in Bd decays [51].

An additional method can be found elsewhere [53].

6 Conclusions

In this paper we have addressed the experimental signaturesof a non-vanishing CP-violating phase
φ in theBs–Bs mixing amplitude. Sinceφ is negligibly small in the Standard Model, but sizeable in
many of its extensions, it provides an excellent ground for the search of new physics. We have dis-
cussed the determination ofφ from both untagged and tagged decays in CP-specificBs decay modes
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triggered by the dominant quark level decaysb → ccs andb → cud. From lifetime measurements
in these modes one can find the product ofcosφ and the width difference∆Γ in theBs system.
The previously proposed methods to separately determine|∆Γ| and | cosφ| from untagged decay
modes require two-exponential fits to the time evolution of either flavour-specific or CP-specific de-
cay modes. In both cases terms of order(∆Γ)2 must be experimentally resolved, which requires a
substantially higher statistics than needed to measure∆Γ cosφ. We have proposed a new method
to measure|∆Γ| and | cosφ|, which only requires lifetime fits to the collected data samples with
double-charm final states. This method does not require sensitivity to O((∆Γ)2) terms. It is based
on the observation that the measurement of∆Γ from branching ratios discussed in [16] and per-
formed in [27] is almost unaffected by new physics. These branching ratios and∆Γ cosφ obtained
from the lifetime fits allow one to solve for|∆Γ| and| cosφ|. In this context we have stressed that the
lifetime measurements also allow one to determine the size of the CP-even and CP-odd components
of D∗+

s D∗−
s andD±

s D
∗∓
s final states. This is relevant for experiments which cannot detect photons

well enough and therefore cannot separate these componentswith angular analyses. We have further
mentioned that a non-zero phaseφ leads to tiny∆mt oscillations in untagged data samples. This
implies that in principle the measurement of CP violation inmixing from flavour-specific decays
does not require tagging.

For the tagged analyses we have generalized the formulae forthe CP asymmetries to the case of
a non-zeroφ. Here we have discussed in detail the expressions needed forthe angular analysis in
Bs → ψφ decays or other final states composed of two vector particles. Finally we have shown how
the discrete ambiguities inφ encountered with the measurements of| cosφ| andsinφ can be resolved
andφ can be determined unambiguously. This is important, even ifsin φ is found to be consistent
with zero, because it distinguishes the Standard Model caseφ ≃ 0 from the caseφ ≃ π. If there
are new particles which couple to quarks with the same CKM elements asW bosons, there can be
new contributions to theBs–Bs mixing amplitude with larger magnitude, but opposite sign than the
Standard Model box diagram. In this case one encountersφ ≃ π. This situation can occur in multi-
Higgs doublet models and in supersymmetric models with flavour universality. From a measurement
of ∆m alone the contributions from the Standard Model and from newphysics to theBs–Bs mixing
amplitude cannot be separated. The new contribution can only be determined by combining the
measurements of∆m andφ. Consider, for example, that∆m is measured in agreement with the
Standard Model prediction: the new physics contribution toBs–Bs mixing then varies between 0
and twice the Standard Model prediction, ifφ is varied between 0 and±π.
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