177 research outputs found

    Acute low-intensity cycling with blood-flow restriction has no effect on metabolic signaling in human skeletal muscle compared to traditional exercise

    Get PDF
    Purpose Autophagy is an intracellular degradative system sensitive to hypoxia and exercise-induced perturbations to cellular bioenergetics. We determined the effects of low-intensity endurance-based exercise performed with blood-flow restriction (BFR) on cell signaling adaptive responses regulating autophagy and substrate metabolism in human skeletal muscle. Methods In a randomized cross-over design, nine young, healthy but physically inactive males completed three experimental trials separated by 1 week of recovery consisting of either a resistance exercise bout (REX: 4 × 10 leg press repetitions, 70% 1-RM), endurance exercise (END: 30 min cycling, 70% VO2peak), or low-intensity cycling with BFR (15 min, 40% VO2peak). A resting muscle biopsy was obtained from the vastus lateralis 2 weeks prior to the first exercise trial and 3 h after each exercise bout. Results END increased ULK1Ser757 phosphorylation above rest and BFR (~37 to 51%, P < 0.05). Following REX, there were significant elevations compared to rest (~348%) and BFR (~973%) for p38γ MAPKThr180/Tyr182 phosphorylation (P < 0.05). Parkin content was lower following BFR cycling compared to REX (~20%, P < 0.05). There were no exercise-induced changes in select markers of autophagy following BFR. Genes implicated in substrate metabolism (HK2 and PDK4) were increased above rest (~143 to 338%) and BFR cycling (~212 to 517%) with END (P < 0.001). Conclusion A single bout of low-intensity cycling with BFR is insufficient to induce intracellular “stress” responses (e.g., high rates of substrate turnover and local hypoxia) necessary to activate skeletal muscle autophagy signaling

    Protein coingestion with alcohol following strenuous exercise attenuates alcohol-induced intramyocellular apoptosis and inhibition of autophagy

    Get PDF
    Alcohol ingestion decreases postexercise rates of muscle protein synthesis, but the mechanism(s) (e.g., increased protein breakdown) underlying this observation is unknown. Autophagy is an intracellular “recycling” system required for homeostatic substrate and organelle turnover; its dysregulation may provoke apoptosis and lead to muscle atrophy. We investigated the acute effects of alcohol ingestion on autophagic cell signaling responses to a bout of concurrent (combined resistance- and endurance-based) exercise. In a randomized crossover design, eight physically active males completed three experimental trials of concurrent exercise with either postexercise ingestion of alcohol and carbohydrate (12 ± 2 standard drinks; ALC-CHO), energy-matched alcohol and protein (ALC-PRO), or protein (PRO) only. Muscle biopsies were taken at rest and 2 and 8 h postexercise. Select autophagy-related gene (Atg) proteins decreased compared with rest with ALC-CHO (P < 0.05) but not ALC-PRO. There were parallel increases (P < 0.05) in p62 and PINK1 commensurate with a reduction in BNIP3 content, indicating a diminished capacity for mitochondria-specific autophagy (mitophagy) when alcohol and carbohydrate were coingested. DNA fragmentation increased in both alcohol conditions (P < 0.05); however, nuclear AIF accumulation preceded this apoptotic response with ALC-CHO only (P < 0.05). In contrast, increases in the nuclear content of p53, TFEB, and PGC-1α in ALC-PRO were accompanied by markers of mitochondrial biogenesis at the transcriptional (Tfam, SCO2, and NRF-1) and translational (COX-IV, ATPAF1, and VDAC1) level (P < 0.05). We conclude that alcohol ingestion following exercise triggers apoptosis, whereas the anabolic properties of protein coingestion may stimulate mitochondrial biogenesis to protect cellular homeostasis

    Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans

    Get PDF
    Abstract High fat feeding impairs skeletal muscle metabolic flexibility and induces insulin resistance, whereas exercise training exerts positive effects on substrate handling and improves insulin sensitivity. To identify the genomic mechanisms by which exercise ameliorates some of the deleterious effects of high fat feeding, we investigated the transcriptional and epigenetic response of human skeletal muscle to 9 days of a high-fat diet (HFD) alone (Sed-HFD) or in combination with resistance exercise (Ex-HFD), using genome-wide profiling of gene expression and DNA methylation. HFD markedly induced expression of immune and inflammatory genes, which was not attenuated by Ex. Conversely, Ex markedly remodelled expression of genes associated with muscle growth and structure. We detected marked DNA methylation changes following HFD alone and in combination with Ex. Among the genes that showed a significant association between DNA methylation and gene expression changes were PYGM, which was epigenetically regulated in both groups, and ANGPTL4, which was regulated only following Ex. In conclusion, while short-term Ex did not prevent a HFD-induced inflammatory response, it provoked a genomic response that may protect skeletal muscle from atrophy. These epigenetic adaptations provide mechanistic insight into the gene-specific regulation of inflammatory and metabolic processes in human skeletal muscle

    Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.

    Get PDF
    It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise

    Association of Coding Variants in Hydroxysteroid 17-beta Dehydrogenase 14 (HSD17B14) with Reduced Progression to End Stage Kidney Disease in Type 1 Diabetes

    Get PDF
    Background Rare variants ingenecodingregions likely have agreater impactondisease-relatedphenotypes than common variants through disruption of their encoded protein. We searched for rare variants associated with onset of ESKD in individuals with type 1 diabetes at advanced kidney disease stage. Methods Gene-basedexome array analyses of15,449genes infivelarge incidence cohortsof individualswith type 1diabetes andproteinuriawere analyzedfor survival time toESKD, testing the top gene in a sixth cohort (n52372/1115 events all cohorts) and replicating in two retrospective case-control studies (n51072 cases, 752 controls). Deep resequencing of the top associated gene in five cohorts confirmed the findings. We performed immunohistochemistry and gene expression experiments in human control and diseased cells, and in mouse ischemia reperfusion and aristolochic acid nephropathy models. Results Protein coding variants in the hydroxysteroid 17- b dehydrogenase 14 gene (HSD17B14), predicted to affect protein structure, had a net protective effect against development of ESKD at exome-wide significance (n54196; P value53.331027). The HSD17B14 gene and encoded enzyme were robustly expressed in healthy human kidney, maximally in proximal tubular cells. Paradoxically, gene and protein expression were attenuated in human diabetic proximal tubules and in mouse kidney injury models. Expressed HSD17B14 gene and protein levels remained low without recovery after 21 days in a murine ischemic reperfusion injury model. Decreased gene expression was found in other CKD-associated renal pathologies. Conclusions HSD17B14 gene ismechanistically involved in diabetic kidney disease. The encoded sex steroid enzyme is a druggable target, potentially opening a new avenue for therapeutic development.Peer reviewe
    corecore