4,677 research outputs found
Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model-Agnostic Interpretations
Model-agnostic interpretation techniques allow us to explain the behavior of
any predictive model. Due to different notations and terminology, it is
difficult to see how they are related. A unified view on these methods has been
missing. We present the generalized SIPA (sampling, intervention, prediction,
aggregation) framework of work stages for model-agnostic interpretations and
demonstrate how several prominent methods for feature effects can be embedded
into the proposed framework. Furthermore, we extend the framework to feature
importance computations by pointing out how variance-based and
performance-based importance measures are based on the same work stages. The
SIPA framework reduces the diverse set of model-agnostic techniques to a single
methodology and establishes a common terminology to discuss them in future
work
Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet
In this work, we utilize T1-weighted MR images and StackNet to predict fluid
intelligence in adolescents. Our framework includes feature extraction, feature
normalization, feature denoising, feature selection, training a StackNet, and
predicting fluid intelligence. The extracted feature is the distribution of
different brain tissues in different brain parcellation regions. The proposed
StackNet consists of three layers and 11 models. Each layer uses the
predictions from all previous layers including the input layer. The proposed
StackNet is tested on a public benchmark Adolescent Brain Cognitive Development
Neurocognitive Prediction Challenge 2019 and achieves a mean squared error of
82.42 on the combined training and validation set with 10-fold
cross-validation. In addition, the proposed StackNet also achieves a mean
squared error of 94.25 on the testing data. The source code is available on
GitHub.Comment: 8 pages, 2 figures, 3 tables, Accepted by MICCAI ABCD-NP Challenge
2019; Added ND
Clinical narrative analytics challenges
Precision medicine or evidence based medicine is based on
the extraction of knowledge from medical records to provide individuals
with the appropriate treatment in the appropriate moment according to
the patient features. Despite the efforts of using clinical narratives for
clinical decision support, many challenges have to be faced still today
such as multilinguarity, diversity of terms and formats in different services,
acronyms, negation, to name but a few. The same problems exist
when one wants to analyze narratives in literature whose analysis would
provide physicians and researchers with highlights. In this talk we will
analyze challenges, solutions and open problems and will analyze several
frameworks and tools that are able to perform NLP over free text to
extract medical entities by means of Named Entity Recognition process.
We will also analyze a framework we have developed to extract and validate
medical terms. In particular we present two uses cases: (i) medical
entities extraction of a set of infectious diseases description texts provided
by MedlinePlus and (ii) scales of stroke identification in clinical
narratives written in Spanish
Differential expression analysis with global network adjustment
<p>Background: Large-scale chromosomal deletions or other non-specific perturbations of the transcriptome can alter the expression of hundreds or thousands of genes, and it is of biological interest to understand which genes are most profoundly affected. We present a method for predicting a gene’s expression as a function of other genes thereby accounting for the effect of transcriptional regulation that confounds the identification of genes differentially expressed relative to a regulatory network. The challenge in constructing such models is that the number of possible regulator transcripts within a global network is on the order of thousands, and the number of biological samples is typically on the order of 10. Nevertheless, there are large gene expression databases that can be used to construct networks that could be helpful in modeling transcriptional regulation in smaller experiments.</p>
<p>Results: We demonstrate a type of penalized regression model that can be estimated from large gene expression databases, and then applied to smaller experiments. The ridge parameter is selected by minimizing the cross-validation error of the predictions in the independent out-sample. This tends to increase the model stability and leads to a much greater degree of parameter shrinkage, but the resulting biased estimation is mitigated by a second round of regression. Nevertheless, the proposed computationally efficient “over-shrinkage” method outperforms previously used LASSO-based techniques. In two independent datasets, we find that the median proportion of explained variability in expression is approximately 25%, and this results in a substantial increase in the signal-to-noise ratio allowing more powerful inferences on differential gene expression leading to biologically intuitive findings. We also show that a large proportion of gene dependencies are conditional on the biological state, which would be impossible with standard differential expression methods.</p>
<p>Conclusions: By adjusting for the effects of the global network on individual genes, both the sensitivity and reliability of differential expression measures are greatly improved.</p>
Recommended from our members
Women’s pelvic floor muscle strength and urinary and anal incontinence after childbirth: a cross-sectional study
Abstract OBJECTIVE To analyse pelvic floor muscle strength (PFMS) and urinary and anal incontinence (UI and AI) in the postpartum period. METHOD Cross-sectional study carried out with women in their first seven months after child birth. Data were collected through interviews, perineometry (Peritron™), and the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF). RESULTS 128 women participated in the study. The PFMS mean was 33.1 (SD=16.0) cmH2O and the prevalence of UI and AI was 7.8% and 5.5%, respectively. In the multiple analyses, the variables associated with PFMS were type of birth and cohabitation with a partner. Newborn’s weight, previous pregnancy, UI during pregnancy, and sexual activity showed an association with UI after child birth. Only AI prior to pregnancy was associated with AI after childbirth. CONCLUSION Vaginal birth predisposes to the reduction of PFMS, and caesarean section had a protective effect to its reduction. The occurrence of UI during pregnancy is a predictor of UI after childbirth, and women with previous pregnancies and newborns with higher weights are more likely to have UI after childbirth.AI prior to pregnancy is the only risk factor for its occurrence after childbirth. Associations between PFMS and cohabitation with a partner, and between UI and sexual activity do not make possible to conclude that these variables are directly associated
Negotiating agency: Amish and ultra-Orthodox women’s responses to the Internet
This study explores how women in two devout religious communities cope with the Internet and its apparent incompatibility with their communities’ values and practices. Questionnaires containing both closed and open-ended questions were completed by 82 participants, approximately half from each community. While their discourses included similar framings of danger and threat, the two groups manifested different patterns of Internet use (and nonuse). Rigorous adherence to religious dictates is greatly admired in these communities, and the women take pride in manipulating their status in them. Their agency is reflected in how they negotiate the tension inherent in their roles as both gatekeepers and agents-of-change, which are analyzed as valuable currencies in their cultural and religious markets
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Comparison of embedded and added motor imagery training in patients after stroke: Study protocol of a randomised controlled pilot trial using a mixed methods approach
Copyright @ 2009 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Two different approaches have been adopted when applying motor imagery (MI) to stroke patients. MI can be conducted either added to conventional physiotherapy or integrated within therapy sessions. The proposed study aims to compare the efficacy of embedded MI to an added MI intervention. Evidence from pilot studies reported in the literature suggests that both approaches can improve performance of a complex motor skill involving whole body movements, however, it remains to be demonstrated, which is the more effective one.Methods/Design: A single blinded, randomised controlled trial (RCT) with a pre-post intervention design will be carried out. The study design includes two experimental groups and a control group (CG). Both experimental groups (EG1, EG2) will receive physical practice of a clinical relevant motor task ('Going down, laying on the floor, and getting up again') over a two week intervention period: EG1 with embedded MI training, EG2 with MI training added after physiotherapy. The CG will receive standard physiotherapy intervention and an additional control intervention not related to MI.The primary study outcome is the time difference to perform the task from pre to post-intervention. Secondary outcomes include level of help needed, stages of motor task completion, degree of motor impairment, balance ability, fear of falling measure, motivation score, and motor imagery ability score. Four data collection points are proposed: twice during baseline phase, once following the intervention period, and once after a two week follow up. A nested qualitative part should add an important insight into patients' experience and attitudes towards MI. Semi-structured interviews of six to ten patients, who participate in the RCT, will be conducted to investigate patients' previous experience with MI and their expectations towards the MI intervention in the study. Patients will be interviewed prior and after the intervention period.Discussion: Results will determine whether embedded MI is superior to added MI. Findings of the semi-structured interviews will help to integrate patient's expectations of MI interventions in the design of research studies to improve practical applicability using MI as an adjunct therapy technique
Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats
This study reports on a comprehensive comparison of the effects of soy and meat proteins given at the recommended level on physiological markers of metabolic syndrome and the hepatic transcriptome. Male rats were fed semi-synthetic diets for 1 wk that differed only regarding protein source, with casein serving as reference. Body weight gain and adipose tissue mass were significantly reduced by soy but not meat proteins. The insulin resistance index was improved by soy, and to a lesser extent by meat proteins. Liver triacylglycerol contents were reduced by both protein sources, which coincided with increased plasma triacylglycerol concentrations. Both soy and meat proteins changed plasma amino acid patterns. The expression of 1571 and 1369 genes were altered by soy and meat proteins respectively. Functional classification revealed that lipid, energy and amino acid metabolic pathways, as well as insulin signaling pathways were regulated differently by soy and meat proteins. Several transcriptional regulators, including NFE2L2, ATF4, Srebf1 and Rictor were identified as potential key upstream regulators. These results suggest that soy and meat proteins induce distinct physiological and gene expression responses in rats and provide novel evidence and suggestions for the health effects of different protein sources in human diets
Urinary MicroRNA Profiling in the Nephropathy of Type 1 Diabetes
Background: Patients with Type 1 Diabetes (T1D) are particularly vulnerable to development of Diabetic nephropathy (DN) leading to End Stage Renal Disease. Hence a better understanding of the factors affecting kidney disease progression in T1D is urgently needed. In recent years microRNAs have emerged as important post-transcriptional regulators of gene expression in many different health conditions. We hypothesized that urinary microRNA profile of patients will differ in the different stages of diabetic renal disease. Methods and Findings: We studied urine microRNA profiles with qPCR in 40 T1D with >20 year follow up 10 who never developed renal disease (N) matched against 10 patients who went on to develop overt nephropathy (DN), 10 patients with intermittent microalbuminuria (IMA) matched against 10 patients with persistent (PMA) microalbuminuria. A Bayesian procedure was used to normalize and convert raw signals to expression ratios. We applied formal statistical techniques to translate fold changes to profiles of microRNA targets which were then used to make inferences about biological pathways in the Gene Ontology and REACTOME structured vocabularies. A total of 27 microRNAs were found to be present at significantly different levels in different stages of untreated nephropathy. These microRNAs mapped to overlapping pathways pertaining to growth factor signaling and renal fibrosis known to be targeted in diabetic kidney disease. Conclusions: Urinary microRNA profiles differ across the different stages of diabetic nephropathy. Previous work using experimental, clinical chemistry or biopsy samples has demonstrated differential expression of many of these microRNAs in a variety of chronic renal conditions and diabetes. Combining expression ratios of microRNAs with formal inferences about their predicted mRNA targets and associated biological pathways may yield useful markers for early diagnosis and risk stratification of DN in T1D by inferring the alteration of renal molecular processes. © 2013 Argyropoulos et al
- …
