42 research outputs found

    Oxygen uptake kinetics in trained adolescent females

    Get PDF
    Little evidence exists with regard to the effect that exercise training has upon oxygen uptake kinetics in adolescent females. PURPOSE: The aim of the study was to compare [Formula: see text] and muscle deoxygenation kinetics in a group of trained (Tr) and untrained (Utr) female adolescents. METHOD: Twelve trained (6.4 ± 0.9 years training, 10.3 ± 1.4 months per year training, 5.2 ± 2.0 h per week) adolescent female soccer players (age 14.6 ± 0.7 years) were compared to a group (n = 8) of recreationally active adolescent girls (age 15.1 ± 0.6 years) of similar maturity status. Subjects underwent two, 6-min exercise transitions at a workload equivalent to 80 % of lactate threshold from a 3-min baseline of 10 W. All subjects had a passive rest period of 1 h between each square-wave transition. Breath-by-breath oxygen uptake and muscle deoxygenation were measured throughout and were modelled via a mono-exponential decay with a delay relative to the start of exercise. RESULT: Peak [Formula: see text] was significantly (p < 0.05) greater in the Tr compared to the Utr (Tr: 43.2 ± 3.2 mL kg(-1 )min(-1) vs. Utr: 34.6 ± 4.0 mL kg(-1 )min(-1)). The [Formula: see text] time constant was significantly (p < 0.05) faster in the Tr compared to the Utr (Tr: 26.3 ± 6.9 s vs. Utr: 35.1 ± 11.5 s). There was no inter-group difference in the time constant for muscle deoxygenation kinetics (Tr: 8.5 ± 3.0 s vs. Utr: 12.4 ± 8.3 s); a large effect size, however, was demonstrated (-0.804). CONCLUSION: Exercise training and/or genetic self-selection results in faster kinetics in trained adolescent females. The faster [Formula: see text] kinetics seen in the trained group may result from enhanced muscle oxygen utilisation

    Cocoa-flavanols enhance moderate-intensity pulmonary [Formula: see text] kinetics but not exercise tolerance in sedentary middle-aged adults.

    Get PDF
    INTRODUCTION: Cocoa flavanols (CF) may exert health benefits through their potent vasodilatory effects, which are perpetuated by elevations in nitric oxide (NO) bioavailability. These vasodilatory effects may contribute to improved delivery of blood and oxygen (O2) to exercising muscle. PURPOSE: Therefore, the objective of this study was to examine how CF supplementation impacts pulmonary O2 uptake ([Formula: see text]) kinetics and exercise tolerance in sedentary middle-aged adults. METHODS: We employed a double-blind cross-over, placebo-controlled design whereby 17 participants (11 male, 6 female; mean ± SD, 45 ± 6 years) randomly received either 7 days of daily CF (400 mg) or placebo (PL) supplementation. On day 7, participants completed a series of 'step' moderate- and severe-intensity exercise tests for the determination of [Formula: see text] kinetics. RESULTS: During moderate-intensity exercise, the time constant of the phase II [Formula: see text] kinetics ([Formula: see text]) was decreased by 15% in CF as compared to PL (mean ± SD; PL 40 ± 12 s vs. CF 34 ± 9 s, P = 0.019), with no differences in the amplitude of [Formula: see text] (A[Formula: see text]; PL 0.77 ± 0.32 l min-1 vs. CF 0.79 ± 0.34 l min-1, P = 0.263). However, during severe-intensity exercise, [Formula: see text], the amplitude of the slow component ([Formula: see text]) and exercise tolerance (PL 435 ± 58 s vs. CF 424 ± 47 s, P = 0.480) were unchanged between conditions. CONCLUSION: Our data show that acute CF supplementation enhanced [Formula: see text] kinetics during moderate-, but not severe-intensity exercise in middle-aged participants. These novel effects of CFs, in this demographic, may contribute to improved tolerance of moderate-activity physical activities, which appear commonly present in daily life. TRIAL REGISTRATION: Registered under ClinicalTrials.gov Identifier no. NCT04370353, 30/04/20 retrospectively registered

    ‘‘Beet-ing’’ the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude

    Get PDF
    Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea-level. Recently, dietary nitrate (NO3-) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3- supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3- supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/ performance. Conversely, current evidence suggests that NO3- supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3- at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3- supplementation. No effects of NO3- supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided

    Sensing, measuring and modelling the mechanical properties of sandstone

    Get PDF
    We present a hybrid framework for simulating the strength and dilation characteristics of sandstone. Where possible, the grain-scale properties of sandstone are evaluated experimentally in detail. Also, using photo-stress analysis, we sense the deviator stress (/strain) distribution at the microscale and its components along the orthogonal directions on the surface of a V-notch sandstone sample under mechanical loading. Based on this measurement and applying a grain-scale model, the optical anisotropy index K0 is inferred at the grain scale. This correlated well with the grain contact stiffness ratio K evaluated using ultrasound sensors independently. Thereafter, in addition to other experimentally characterised structural and grain-scale properties of sandstone, K is fed as an input into the discrete element modelling of fracture strength and dilation of the sandstone samples. Physical bulk scale experiments are also conducted to evaluate the load-displacement relation, dilation and bulk fracture strength characteristics of sandstone samples under compression and shear. A good level of agreement is obtained between the results of the simulations and experiments. The current generic framework could be applied to understand the internal and bulk mechanical properties of such complex opaque and heterogeneous materials more realistically in future
    corecore