2,280 research outputs found

    Testing the Collisionless Nature of Dark Matter with the Radial Acceleration Relation in Galaxy Clusters

    Get PDF
    The radial acceleration relation (RAR) represents a tight empirical relation between the inferred total and baryonic centripetal accelerations, g tot = GM tot(< r)/r 2 and g bar = GM bar(< r)/r 2, observed in galaxies and galaxy clusters. The tight correlation between these two quantities can provide insight into the nature of dark matter. Here we use BAHAMAS, a state-of-the-art suite of cosmological hydrodynamical simulations, to characterize the RAR in cluster-scale halos for both cold and collisionless dark matter (CDM) and self-interacting dark matter (SIDM) models. SIDM halos generally have reduced central dark matter densities, which reduces the total acceleration in the central region when compared with CDM. We compare the RARs in galaxy clusters simulated with different dark matter models to the RAR inferred from CLASH observations. Our comparison shows that the cluster-scale RAR in the CDM model provides an excellent match to the CLASH RAR obtained by Tian et al. including the high-acceleration regime probed by the brightest cluster galaxies (BCGs). By contrast, models with a larger SIDM cross section yield increasingly poorer matches to the CLASH RAR. Excluding the BCG regions results in a weaker but still competitive constraint on the SIDM cross section. Using the RAR data outside the central r < 100 kpc region, an SIDM model with σ/m = 0.3 cm2 g−1 is disfavored at the 3.8σ level with respect to the CDM model. This study demonstrates the power of the cluster-scale RAR for testing the collisionless nature of dark matter

    Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome

    Get PDF
    Inflammasomes are important for host defence against pathogens and homeostasis with commensal microbes. Here, we show non-haemolytic enterotoxin (NHE) from the neglected human foodborne pathogen Bacillus cereus is an activator of the NLRP3 inflammasome and pyroptosis. NHE is a non-redundant toxin to haemolysin BL (HBL) despite having a similar mechanism of action. Via a putative transmembrane region, subunit C of NHE initiates binding to the plasma membrane, leading to the recruitment of subunit B and subunit A, thus forming a tripartite lytic pore that is permissive to efflux of potassium. NHE mediates killing of cells from multiple lineages and hosts, highlighting a versatile functional repertoire in different host species. These data indicate that NHE and HBL operate synergistically to induce inflammation and show that multiple virulence factors from the same pathogen with conserved function and mechanism of action can be exploited for sensing by a single inflammasome

    Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin

    Get PDF
    Spent coffee grounds (SCG) and coffee silverskin (CS) represent a great pollution hazard if discharged into the environment. Taking this fact into account, the purpose of this study was to evaluate the chemical composition, functional properties, and structural characteristics of these agro-industrial residues in order to identify the characteristics that allow their reutilization in industrial processes. According to the results, SCG and CS are both of lignocellulosic nature. Sugars polymerized to their cellulose and hemicellulose fractions correspond to 51.5 and 40.45 % w/w, respectively; however, the hemicellulose sugars and their composition significantly differ from one residue to another. SCG and CS particles differ in terms of morphology and crystallinity, but both materials have very low porosity and similar melting point. In terms of functional properties, SCG and CS present good water and oil holding capacities, emulsion activity and stability, and antioxidant potential, being therefore great candidates for use on food and pharmaceutical fields.The authors acknowledge the financial support of the Science and Technology Foundation of Portugal (FCT) through the grant SFRH/BD/80948/2011 and the Strategic Project PEst-OE/EQB/LA0023/2013. The authors also thank the Project "BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes", REF. NORTE-07-0124-FEDER-000028 co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. Thanks are also given to Prof. Jose J.M. Orfao, from the Department of Chemical Engineering, Universidade do Porto (Portugal), for his assistance with the porosity analyses

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells

    Posture of the arm when grasping spheres to place them elsewhere

    Get PDF
    Despite the infinitely many ways to grasp a spherical object, regularities have been observed in the posture of the arm and the grasp orientation. In the present study, we set out to determine the factors that predict the grasp orientation and the final joint angles of reach-tograsp movements. Subjects made reach-to-grasp movements toward a sphere to pick it up and place it at an indicated location. We varied the position of the sphere and the starting and placing positions. Multiple regression analysis showed that the sphere's azimuth from the subject was the best predictor of grasp orientation, although there were also smaller but reliable contributions of distance, starting position, and perhaps even placing position. The sphere's initial distance from the subject was the best predictor of the final elbow angle and shoulder elevation. A combination of the sphere's azimuth and distance from the subject was required to predict shoulder angle, trunkhead rotation, and lateral head position. The starting position best predicted the final wrist angle and sagittal head position. We conclude that the final posture of the arm when grasping a sphere to place it elsewhere is determined to a larger extend by the initial position of the object than by effects of starting and placing position. © 2010 Springer-Verlag

    Identification of preferential target sites for human DNA methyltransferases

    Get PDF
    DNA methyltransferases (DNMTs) play an important role in establishing and maintaining DNA methylation. Aberrant expression of DNMTs and their isoforms has been found in many types of cancer, and their contribution to aberrant DNA methylation has been proposed. Here, we generated HEK 293T cells stably transfected with each of 13 different DNMTs (DNMT1, two DNMT3A isoforms, nine DNMT3B isoforms and DNMT3L) and assessed the DNA methylation changes induced by each DNMT. We obtained DNA methylation profiles of DNA repetitive elements and 1505 CpG sites from 808 cancer-related genes. We found that DNMTs have specific and overlapping target sites and their DNA methylation target profiles are a reflection of the DNMT domains. By examining H3K4me3 and H3K27me3 modifications in the 808 gene promoter regions using promoter ChIP-on-chip analysis, we found that specific de novo DNA methylation target sites of DNMT3A1 are associated with H3K4me3 modification that are transcriptionally active, whereas the specific target sites of DNMT3B1 are associated with H3K27me3 modification that are transcriptionally inactive. Our data suggest that different DNMT domains are responsible for targeting DNA methylation to specific regions of the genome, and this targeting might be associated with histone modifications

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Reduction of artefacts caused by hip implants in CT-based attenuation-corrected PET images using 2-D interpolation of a virtual sinogram on an irregular grid

    Get PDF
    Metallic prosthetic replacements, such as hip or knee implants, are known to cause strong streaking artefacts in CT images. These artefacts likely induce over- or underestimation of the activity concentration near the metallic implants when applying CT-based attenuation correction of positron emission tomography (PET) images. Since this degrades the diagnostic quality of the images, metal artefact reduction (MAR) prior to attenuation correction is required

    Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors

    Get PDF
    In this study, dideoxy sequencing and 454 high-throughput sequencing were used to analyze diversities of the ammonia monooxygenase (amoA) genes and the 16S rRNA genes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in six municipal wastewater treatment plants. The results showed that AOB amoA genes were quite diverse in different wastewater treatment plants while the 16S rRNA genes were relatively conserved. Based on the observed complexity of amoA and 16S rRNA genes, most of the AOB can be assigned to the Nitrosomonas genus, with Nitrosomonas ureae, Nitrosomonas oligotropha, Nitrosomonas marina, and Nitrosomonas aestuarii being the four most dominant species. From the sequences of the AOA amoA genes, most AOA observed in this study belong to the CGI.1b group, i.e., the soil lineage. The AOB amoA and 16S rRNA genes were quantified by quantitative PCR and 454 high-throughput pyrosequencing, respectively. Although the results from the two approaches show some disconcordance, they both indicated that the abundance of AOB in activated sludge was very low
    corecore