389 research outputs found

    Longitudinal Pharmacokinetic-Pharmacodynamic Biomarkers Correlate With Treatment Outcome in Drug-Sensitive Pulmonary Tuberculosis: A Population Pharmacokinetic-Pharmacodynamic Analysis

    Get PDF
    BACKGROUND: This study aims to explore relationships between baseline demographic covariates, plasma antibiotic exposure, sputum bacillary load, and clinical outcome data to help improve future tuberculosis (TB) treatment response predictions. METHODS: Data were available from a longitudinal cohort study in Malawian drug-sensitive TB patients on standard therapy, including steady-state plasma antibiotic exposure (154 patients), sputum bacillary load (102 patients), final outcome (95 patients), and clinical details. Population pharmacokinetic and pharmacokinetic-pharmacodynamic models were developed in the software package NONMEM. Outcome data were analyzed using univariate logistic regression and Cox proportional hazard models in R, a free software for statistical computing. RESULTS: Higher isoniazid exposure correlated with increased bacillary killing in sputum (P < .01). Bacillary killing in sputum remained fast, with later progression to biphasic decline, in patients with higher rifampicin area under the curve (AUC)_{0-24} (P < .01). Serial sputum colony counting negativity at month 2 (P < .05), isoniazid C_{MAX} (P < .05), isoniazid C_{MAX}/minimum inhibitory concentration ([MIC] P < .01), and isoniazid AUC_{0-24}/MIC (P < .01) correlated with treatment success but not with remaining free of TB. Slower bacillary killing (P < .05) and earlier progression to biphasic bacillary decline (P < .01) both correlate with treatment failure. Posttreatment recurrence only correlated with slower bacillary killing (P < .05). CONCLUSIONS: Patterns of early bacillary clearance matter. Static measurements such as month 2 sputum conversion and pharmacokinetic parameters such as C_{MAX}/MIC and AUC_{0-24}/MIC were predictive of treatment failure, but modeling of quantitative longitudinal data was required to assess the risk of recurrence. Pooled individual patient data analyses from larger datasets are needed to confirm these findings

    Robust estimation of microbial diversity in theory and in practice

    Get PDF
    Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics ("Hill diversities"), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures. Supplement: 16 pages, 4 figure

    A metastable equilibrium model for the relative abundances of microbial phyla in a hot spring

    Get PDF
    Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables has rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as ‘‘Bison Pool’’ in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community.Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the composition of biomass and the environmental conditions

    Treatment of hemangiomas in children using a Nd:YAG laser in conjunction with ice cooling of the epidermis: techniques and results

    Get PDF
    BACKGROUND: Hemangiomas are the most common type of congenital anomaly in childhood. Although many resolve spontaneously, intervention is required when their growth could damage vital adjacent structures. Various therapeutic approaches to childhood hemangiomas with different types of laser have been described previously. The objective of this study was to determine whether the cooling of the epidermis during irradiation of hemangiomas with a Nd:YAG laser prevents thermal damage and decreases the number of sessions required to treat these lesions. METHODS: Between 1993 and 2001, 110 patients aged 3 months to 4 years, with cutaneous hemangiomas were treated with a Nd:YAG laser. The lesion was cooled with ice prior to, during, and after the irradiation. During each session the laser beam passed through the pieces of ice. The laser power was between 35–45 W with a pulse length of 2–10 seconds. RESULTS: After 6 months of follow-up, from the first session of laser treatment, total resolution was obtained in 72 (65.5%) patients. A second or third session followed in 30 out of 38 patients in which, the initial results were good, moderate, or poor. The parents of the remaining eight children refused this second session and these patients excluded from the study Complications were seen in nine (8.8%) patients. One patient had postoperative bleeding which stopped spontaneously, while atrophic scars occurred in six (5.8%) patients, and hypertrophic scars in two (1.9%) patients. CONCLUSIONS: Nd:YAG laser irradiation in conjunction with ice protection of the epidermis produces good cosmetic results for the treatment of cutaneous hemangiomas in children, and decreases the number of sessions for treatment of these lesions

    Health – related quality of life of Kuwaiti women with breast cancer: a comparative study using the EORTC Quality of Life Questionnaire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Kuwaiti perspective on quality of life (QOL) in breast cancer is important because it adds the contribution from a country where the disease affects women at a relatively younger age and seems to be more aggressive. We used the EORTC QLQ – C30 and its breast-specific module (BR-23) to highlight the health-related QOL of Kuwaiti women with breast cancer, in comparison with the international data, and assessed the socio-demographic and clinical variables that predict the five functional scales and global QOL (GQOL) scale of the QLQ – C30.</p> <p>Methods</p> <p>Participants were consecutive clinic attendees for chemotherapy, in stable condition, at the Kuwait Cancer Control Center.</p> <p>Results</p> <p>The 348 participants were aged 20–81 years (mean 48.3, SD 10.3); 58.7% had stages III and IV disease. Although the mean scores for QLQ – C30 (GQOL, 45.3; and five functional scales, 52.6%–61.2%) indicated that the patients had poor to average functioning, only 5.8% to 11.2% had scores that met the </= 33% criterion for problematic functioning, while 12.0% to 40.0% met the >66% criterion for more severe symptoms. Most (47.8%–70.1%) met the >66% criterion for "good functioning" on the BR-23 functional scales. The mean scores of the QLQ – C30 indicated that, despite institutional supports, Kuwaiti women had clinically significantly poorer global QOL and functional scale scores, and more intense symptom experience, in comparison with the international data (i.e., </= 10% difference between groups). For the BR-23, Kuwaiti women seemed to have clinically significantly better functional scale scores, but more severe symptoms, especially systemic side effects and breast symptoms. Younger women had poorer HRQOL scores. In regression analysis, social functioning accounted for the highest proportion of variance for GQOL.</p> <p>Conclusion</p> <p>The relatively high number that met the criterion for good functioning on the functional scales is an evidence base to boost national health education about psychosocial prognosis in cancer. In view of the poor performance on the symptom scales, clinicians treating Kuwaiti women with breast cancer should prepare them for the acute toxicities of treatment and address fatigue. The findings call for the institution of a psycho-oncology service to address psycho-social issues.</p

    Intraoperative electrocortical stimulation of Brodman area 4: a 10-year analysis of 255 cases

    Get PDF
    BACKGROUND: Brain tumor surgery is limited by the risk of postoperative neurological deficits. Intraoperative neurophysiological examination techniques, which are based on the electrical excitability of the human brain cortex, are thus still indispensable for surgery in eloquent areas such as the primary motor cortex (Brodman Area 4). METHODS: This study analyzed the data obtained from a total of 255 cerebral interventions for lesions with direct contact to (121) or immediately adjacent to (134) Brodman Area 4 in order to optimize stimulation parameters and to search for direct correlation between intraoperative potential changes and specific surgical maneuvers when using monopolar cortex stimulation (MCS) for electrocortical mapping and continuous intraoperative neurophysiological monitoring. RESULTS: Compound muscle action potentials (CMAPs) were recorded from the thenar muscles and forearm flexors in accordance with the large representational area of the hand and forearm in Brodman Area 4. By optimizing the stimulation parameters in two steps (step 1: stimulation frequency and step 2: train sequence) MCS was successful in 91% (232/255) of the cases. Statistical analysis of the parameters latency, potential width and amplitude showed spontaneous latency prolongations and abrupt amplitude reductions as a reliable warning signal for direct involvement of the motor cortex or motor pathways. CONCLUSION: MCS must be considered a stimulation technique that enables reliable qualitative analysis of the recorded potentials, which may thus be regarded as directly predictive. Nevertheless, like other intraoperative neurophysiological examination techniques, MCS has technical, anatomical and neurophysiological limitations. A variety of surgical and non-surgical influences can be reason for false positive or false negative measurements

    Effects of Anesthetic Agents on Brain Blood Oxygenation Level Revealed with Ultra-High Field MRI

    Get PDF
    During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T2*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine). We showed that the brain/vessels contrast in T2*-weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore