906 research outputs found

    Tunable Emergent Heterostructures in a Prototypical Correlated Metal

    Full text link
    At the interface between two distinct materials desirable properties, such as superconductivity, can be greatly enhanced, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which, would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly-correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy -- a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn5, suggesting that in-situ tunable heterostructures can be realized in correlated electron materials

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    HFR1 Is Crucial for Transcriptome Regulation in the Cryptochrome 1-Mediated Early Response to Blue Light in Arabidopsis thaliana

    Get PDF
    Cryptochromes are blue light photoreceptors involved in development and circadian clock regulation. They are found in both eukaryotes and prokaryotes as light sensors. Long Hypocotyl in Far-Red 1 (HFR1) has been identified as a positive regulator and a possible transcription factor in both blue and far-red light signaling in plants. However, the gene targets that are regulated by HFR1 in cryptochrome 1 (cry1)-mediated blue light signaling have not been globally addressed. We examined the transcriptome profiles in a cry1- and HFR1-dependent manner in response to 1 hour of blue light. Strikingly, more than 70% of the genes induced by blue light in an HFR1-dependent manner were dependent on cry1, and vice versa. High overrepresentation of W-boxes and OCS elements were found in these genes, indicating that this strong cry1 and HFR1 co-regulation on gene expression is possibly through these two cis-elements. We also found that cry1 was required for maintaining the HFR1 protein level in blue light, and that the HFR1 protein level is strongly correlated with the global gene expression pattern. In summary, HFR1, which is fine-tuned by cry1, is crucial for regulating global gene expression in cry1-mediated early blue light signaling, especially for the function of genes containing W-boxes and OCS elements

    Tetrahedral mesh improvement by shell transformation

    Get PDF
    Existing flips for tetrahedral meshes simply make a selection from a few possible configurations within a single shell (i.e., a polyhedron that can be filled up with a mesh composed of a set of elements that meet each other at one edge), and their effectiveness is usually confined. A new topological operation for tetrahedral meshes named shell transformation is proposed. Its recursive callings execute a sequence of shell transformations on neighboring shells, acting like composite edge removal transformations. Such topological transformations are able to perform on a much larger element set than that of a single flip, thereby leading the way towards a better local optimum solution. Hence, a new mesh improvement algorithm is developed by combining this recursive scheme with other schemes, including smoothing, point insertion and point suppression. Numerical experiments reveal that the proposed algorithm can well balance some stringent and yet sometimes even conflict requirements of mesh improvement, i.e., resulting in high-quality meshes and reducing computing time at the same time. Therefore, it can be used for mesh quality improvement tasks involving millions of elements, in which it is essential not only to generate high-quality meshes, but also to reduce total computational time for mesh improvement

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    IP-10 Levels as an Accurate Screening Tool to Detect Acute HIV Infection in Resource-Limited Settings.

    Get PDF
    Acute HIV infection (AHI) is the period prior to seroconversion characterized by high viral replication, hyper-transmission potential and commonly, non-specific febrile illness. AHI detection requires HIV-RNA viral load (VL) determination, which has very limited access in low-income countries due to restrictive costs and implementation constraints. We sought to identify a biomarker that could enable AHI diagnosis in scarce-resource settings, and to evaluate the feasibility of its implementation. HIV-seronegative adults presenting at the Manhiça District Hospital, Mozambique, with reported-fever were tested for VL. Plasma levels of 49 inflammatory biomarkers from AHI (n = 61) and non-HIV infected outpatients (n = 65) were determined by Luminex and ELISA. IP-10 demonstrated the best predictive power for AHI detection (AUC = 0.88 [95%CI 0.80-0.96]). A cut-off value of IP-10 ≥ 161.6 pg/mL provided a sensitivity of 95.5% (95%CI 85.5-99.5) and a specificity of 76.5% (95%CI 62.5-87.2). The implementation of an IP-10 screening test could avert from 21 to 84 new infections and save from US176,609toUS176,609 to US533,467 to the health system per 1,000 tested patients. We conclude that IP-10 is an accurate biomarker to screen febrile HIV-seronegative individuals for subsequent AHI diagnosis with VL. Such an algorithm is a cost-effective strategy to prevent disease progression and a substantial number of further HIV infections

    IL-10 Suppression of NK/DC Crosstalk Leads to Poor Priming of MCMV-Specific CD4 T Cells and Prolonged MCMV Persistence

    Get PDF
    IL-10 is an anti-inflammatory cytokine that regulates the extent of host immunity to infection by exerting suppressive effects on different cell types. Herpes viruses induce IL-10 to modulate the virus-host balance towards their own benefit, resulting in prolonged virus persistence. To define the cellular and molecular players involved in IL-10 modulation of herpes virus-specific immunity, we studied mouse cytomegalovirus (MCMV) infection. Here we demonstrate that IL-10 specifically curtails the MCMV-specific CD4 T cell response by suppressing the bidirectional crosstalk between NK cells and myeloid dendritic cells (DCs). In absence of IL-10, NK cells licensed DCs to effectively prime MCMV-specific CD4 T cells and we defined the pro-inflammatory cytokines IL-12, IFN-γ and TNF-α as well as NK cell activating receptors NKG2D and NCR-1 to regulate this bidirectional NK/DC interplay. Consequently, markedly enhanced priming of MCMV-specific CD4 T cells in Il10-/-mice led to faster control of lytic viral replication, bu
    corecore