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Abstract

IL-10 is an anti-inflammatory cytokine that regulates the extent of host immunity to infection by exerting suppressive effects
on different cell types. Herpes viruses induce IL-10 to modulate the virus-host balance towards their own benefit, resulting
in prolonged virus persistence. To define the cellular and molecular players involved in IL-10 modulation of herpes virus-
specific immunity, we studied mouse cytomegalovirus (MCMV) infection. Here we demonstrate that IL-10 specifically curtails
the MCMV-specific CD4 T cell response by suppressing the bidirectional crosstalk between NK cells and myeloid dendritic
cells (DCs). In absence of IL-10, NK cells licensed DCs to effectively prime MCMV-specific CD4 T cells and we defined the pro-
inflammatory cytokines IL-12, IFN-c and TNF-a as well as NK cell activating receptors NKG2D and NCR-1 to regulate this
bidirectional NK/DC interplay. Consequently, markedly enhanced priming of MCMV-specific CD4 T cells in Il102/2 mice led
to faster control of lytic viral replication, but this came at the expense of TNF-a mediated immunopathology. Taken
together, our data show that early induction of IL-10 during MCMV infection critically regulates the strength of the innate-
adaptive immune cell crosstalk, thereby impacting beneficially on the ensuing virus-host balance for both the virus and the
host.
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Introduction

Persistent viral infections are very widespread in mammalian

hosts and are often associated with relevant clinical symptoms

which can culminate in fatal disease [1]. The establishment of a

persistent viral infection requires specific viral properties to

achieve co-existence with potent antiviral defense mechanisms.

Viruses have therefore evolved various strategies to effectively

modulate or hide from host immunity. Herpes viruses, including

cytomegalovirus (CMV), encode for immune evasion proteins,

which either affect antigen presentation, innate immune signaling

or modulate host cytokine responses [2]. IL-10 is an anti-

inflammatory cytokine that plays an important role in the

regulation of host immunity to infection [3]. It acts by multiple

immunosuppressive modes, mainly affecting the expression of pro-

inflammatory cytokines and chemokines, modulating the function

of antigen-presenting cells and directly or indirectly suppressing

effector T cell responses [4]. IL-10 is expressed during a number of

persistent viral infections and might on the one hand favor viral

replication and persistence by suppressing antiviral defense

mechanisms, but on the other hand might also be beneficial for

the host by limiting immunopathology in the setting of antigen

persistence and active antiviral immunity. Herpes viruses such as

CMV and EBV exploit the functions of cellular IL-10 by encoding

for viral IL-10 homologues [5] and by interfering with the IL-10R

signaling pathway. Consistent with an immunosuppressive role of

the viral IL-10 homologue, a recent study in rhesus macaques

infected with a CMV lacking the RhCMV homologue of IL-10

(rhcmv-IL-10) reported enhanced T and B cell immunity [6].

Mouse CMV does not encode for its own IL-10 homologue but

instead uses cellular IL-10 to modulate host immunity. Thus,

endogenous IL-10 promotes virus replication in the salivary gland,

an important mucosal site of virus persistence, which is likely to

facilitate horizontal transmission of the virus [7]. A role of IL-10

for promoting virus persistence has also been show in chronic

LCMV Clone 13 infection, where the absence of IL-10 led to virus

clearance and restored functionality of LCMV-specific CD8 T

cells [8,9]. Conversely with IL-10 being an important regulator of

host immunity, it is implied to attenuate host tissue damage that

could occur during unregulated antiviral immunity, in particular
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in the context of chronic infection. Indeed, MCMV-infected

Il102/2 mice were reported to exhibit increased liver pathology

and severity of MCMV disease, which was ameliorated by

administration of recombinant IL-10 [10].

The impact of IL-10 during the early phase of persistent viral

infections, in particular for the induction of adaptive immunity,

has not yet been extensively evaluated. Here we investigate in vivo

the role of cellular IL-10 during acute MCMV infection with

specific emphasis on its regulation of innate-adaptive crosstalk. We

show that IL-10 specifically limits MCMV-specific CD4 T cell

responses, but not CD8 T cell responses, by suppressing myeloid

CD8a2 DC and NK cell function. Via interfering with the NK/

DC crosstalk, IL-10 suppressed the induction of CD4 T cell

protective immunity, facilitated MCMV persistence, but prevent-

ed development of TNF-a mediated immunopathology. Taken

together, our data establish that induction of IL-10 during acute

CMV infection plays an important role in regulating the

magnitude of innate-adaptive crosstalk, thus altering the balance

between the virus and the host.

Results

Il102/2 mice show increased body weight loss and
reduced viral loads during acute MCMV infection

Early control of MCMV replication in C57BL/6 mice is to a

large extent mediated by NK cells, due to their robust activation

via interaction of Ly49H activating receptor on NK cells and

MCMV protein m157 expressed on the surface of infected cells

[11]. However, it was shown that the majority of wild type (wt)

strains of MCMV does not encode for the m157 sequence that

trigger NK cell responses through the engagement of the Ly49H

receptor, indicating that the strong NK cell response mediated via

Ly49H early upon MCMV infection is unlikely to be a very

representative situation [12]. We therefore used an m157 deletion

mutant virus to avoid massive activation of NK cells via Ly49H.

However, we corroborated our main findings with m157-sufficient

wt MCMV (Fig. S8, S9).

Based on recently published data that induction of IL-10 during

MCMV infection promotes virus persistence in the salivary glands

and decreases latent viral loads [7,13], we were interested to define

the time point when IL-10 starts to influence the MCMV control

in various organs. We found that MCMV-infected Il102/2 mice

exhibited reduced virus loads already during acute infection

(Figure 1A). While virus titers in the salivary gland and lungs were

comparable with B6 mice at day 7 post infection (p.i.), they were

considerably diminished at day 14 and 21 p.i. in Il102/2 mice.

Elevated levels of pro-inflammatory cytokines IFN-c and TNF-a
were found at day 5.5 of infection in Il102/2 mice (Figure 1B).

Furthermore, Il102/2 mice developed enhanced body weight loss

early upon infection (Figure 1C), reaching the nadir between day 5

and 6 p.i., but recovered thereafter to B6 weight levels by day

14 p.i. To determine whether the increased body weight loss in

Il102/2 mice was a consequence of excessive cytokine production,

we neutralized TNF-a (Figure 1C), since neutralization of IFN-c
was reported to have no effect on the development of pathology in

Il102/2 mice [14]. Notably, neutralization of TNF-a abolished

body weight loss in Il102/2 mice, indicating that unregulated

secretion of TNF-a mediated the development of pathology in

Il102/2 mice (Figure 1C).

To address whether the enhanced control of viral replication in

Il102/2 mice was caused by T cells, we used aCD4 and aCD8

depleting antibodies to eliminate the respective cell types

(Figure 1D). We found that Il102/2 mice depleted of CD4 T

cells exhibited significantly increased virus titers compared to PBS

treated Il102/2 mice, indicating a pivotal role of CD4 T cells in

the enhanced MCMV control in Il102/2 mice. In contrast, CD8

T cells were dispensable for increased anti-MCMV immunity in

Il102/2 mice, since their depletion did not affect virus control.

Moreover, CD4 T cell depleted Il102/2 mice showed reduced

body weight loss compared to untreated Il102/2 mice (Figure 1E).

Thus, we conclude that CD4 T cells are responsible for the

enhanced MCMV control and contribute to body weight loss

observed in Il102/2 mice. However, other cell types likely

contribute to increased body weight loss in Il102/2 mice as well,

since CD4 T cell depleted Il102/2 mice still lost more body weight

than untreated B6 mice (Figure 1E).

Taken together, these data demonstrate that Il102/2 mice

harbor reduced viral loads at the expense of increased body weight

loss during the acute phase of MCMV infection due to the action

of CD4 but not CD8 T cells. Hence, IL-10 has a dual role during

the course of early MCMV infection; it inhibits the development of

pathology, which is beneficial for the host, but at the same time it

promotes lytic replication of the virus for prolonged time periods,

which is beneficial for transmission of the virus.

IL-10 differentially affects MCMV-specific CD4 vs CD8 T
cell responses during acute infection

To investigate in more detail the CD4 dependent regulation of

virus control in Il102/2 mice, we analyzed the pool size and

functionality of virus-specific CD4 and CD8 T cells upon MCMV

infection. T cells were isolated from different organs and ex vivo

restimulated with MCMV-derived CD4 and CD8 T cell peptide

epitopes (Figure 2). We found that Il102/2 mice showed markedly

increased frequencies and total numbers of MCMV-specific CD4

T cells producing IFN-c and TNF-a at day 14 p.i. This massive

Author Summary

Cytomegalovirus (CMV) infections are very widespread in
mammalian hosts. Despite the fact that CMVs are usually
well controlled by the immune system, they cause
persistent life-long infection and have evolved a number
of strategies to effectively modulate or hide from host
immunity. Since the establishment of an immunosuppres-
sive environment favors virus persistence, IL-10 is one of
the host targets that CMVs actively use to tune the virus-
host balance toward their own benefit, resulting in
prolonged virus persistence and hence increased chance
for horizontal transmission. Here, we delineate the
mechanisms of how IL-10 exerts its powerful immune-
suppressing function in the context of murine cytomeg-
alovirus (MCMV) infection. We found that IL-10 specifically
restrains the priming of MCMV-specific CD4 T cell
responses by suppressing dendritic cell (DC) - natural killer
cell (NK) crosstalk during acute MCMV infection. Target
molecules mediating this bi-directional crosstalk between
DCs and NK cells were the pro-inflammatory cytokines IL-
12, IFN-c and TNF-a as well as NK cell activating receptors
NKG2D and NCR-1 and all of them were markedly
suppressed by IL-10. A consequence resulting from this
impeded DC-NK cross-talk by IL-10, leading to poor
priming of MCMV-specific CD4 T cell responses was
increased lytic CMV persistence and reduced development
of host tissue damage. Our study indicates that early
induction of IL-10 during MCMV infection critically regu-
lates the strength of the innate-adaptive crosstalk, thereby
imparting on the ensuing virus-host balance for the
benefit of both the virus and the host.
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Figure 1. Il102/2 mice show reduced virus loads and increased body weight loss during acute MCMV infection. B6 and Il102/2 mice
were infected i.v. with 56106 PFU Dm157 MCMV. A) Virus titers on different days post infection were determined in lungs and salivary glands. Each
symbol represents one individual mouse, horizontal line indicates the mean (n = 3–6, dashed line indicates detection limit). Data are representative of
3 independent experiments. B) IFN-c, TNF-a and IL-12 protein concentrations were determined in the sera of B6 and Il102/2 mice at day 5.5 post
infection by cytometric bead array (BD, Bioscience) and murine IL-12 ELISA Kit (Peprotech). Each symbol represents one individual mouse, horizontal
line indicates the mean (n = 3). Data are representative of 2 independent experiments. C, E) Body weight change of B6 and Il102/2 mice was
measured up to 14 or 20 days post infection. Change in percentage of body weight relative to day 0 is shown. One group of Il102/2 mice was treated
with a neutralizing anti-TNF-a antibody (C) or depleted of CD4 T cells (E). Right panel in E indicates the same experiment showing significances for
day 6 p.i. Data are representative of 3 independent experiments. Each symbol represents the mean of 3 mice per group, error bars indicate the
standard deviation. D) Virus titers in lungs and salivary glands on day 14 post infection of B6 and Il102/2 mice with or without depletion of CD4 or
CD8 T cells. Each symbol represents one individual mouse, horizontal line indicates the mean (n = 5–7, dashed line indicates detection limit). Pooled
data from 2 independent experiments are shown. Statistical analysis was performed by 2-tailed unpaired student’s t-test (* p,0.05, ** p,0.01,
*** p,0.001).
doi:10.1371/journal.ppat.1002846.g001
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increase of MCMV-specific CD4 T cells was apparent in all

organs tested (Figure 2A, B).

In contrast, MCMV-specific CD8 T cell responses were not

significantly affected in Il102/2 mice during acute infection.

MCMV infection shapes the CD8 T cell response in a particular

way, concomitantly driving the accumulation of CD8 T cells

specific for certain viral peptides (inflationary responses) and

inducing classical expansion/contraction kinetics of others (con-

ventional responses). We analyzed the size of one representative

CD8 T cell response of the conventional and inflationary type of

MCMV-specific CD8 T cells [15]. We found that conventional

(specific for the M45 epitope) as well as inflationary (specific for the

M38 epitope) CD8 T cell responses were comparable in MCMV-

infected Il102/2 and B6 mice (Figure 2C, Figure S1). Taken

together, these data establish that IL-10 differentially affects T cell

populations during the acute phase of infection; while it

profoundly inhibits virus-specific CD4 T cell response it has only

a minor impact on MCMV-specific CD8 T cell responses.

Early induction of IL-10 suppresses CD8a2CD11b+ DC
maturation and leads to poor CD4 T cell priming during
MCMV infection

Since we observed a major impact of IL-10 on the virus-specific

CD4 T cell response, we were interested to identify whether IL-10

is acting directly on CD4 T cells or indirectly through the

modulation of the quality and phenotype of APCs. We addressed

the first possibility by generating mixed bone marrow (BM)

chimeras in which only CD4 T cells were either deficient or

sufficient for the IL-10Rb or in which all cells lacked IL-10Rb
expression. While the latter group exhibited massively increased

numbers MCMV-specific CD4 T cells upon infection and showed

increased control of viral replication, CD4 T cell responses in the

presence or absence of IL-10Rb selectively on CD4 T cells

resulted in similarly low frequencies of MCMV-specific CD4 T

cells as in presence of IL-10Rb on CD4 T cells, indicating that

direct IL-10 signaling on CD4 T cells does not constrain the size of

Figure 2. IL-10 differentially affects MCMV-specific CD4 vs CD8 T cell responses. B6 or Il102/2 mice were infected i.v. with 56106 PFU
Dm157 MCMV. Lymphocytes from spleen, lungs, liver and salivary gland (A) or lung (B) were isolated at day 14 post infection and ex vivo restimulated
with appropriate peptides. A, B) CD4 T cells were restimulated with a pool of M14, m18, M25, M112, m139 and m142 peptides (CD4 peptide pool, A,
B), or with M25 and m142 peptide alone (B). Fold increase in percentage of IFN-c+ TNF-a+ peptide-specific CD4 T cells between Il102/2 and B6 mice
(A, right panel, (n = 3), data are representative for at least 3 experiments, error bars indicate the standard deviation). (B) Total numbers (lower row)
and percentages (upper row) of IFN-c + TNF-a+ peptide-specific CD4 T cells from B6 and Il102/2 mice. C) Lung lymphocytes were isolated from
infected mice and M45- or M38-specific CD8 T cells were quantified by tetramer staining (n = 3, data are representative from at least 3 experiments,
error bars indicate the standard deviation). Statistical analysis was performed by 2-tailed unpaired student’s t-test (* p,0.05, ** p,0.01, *** p,0.001).
doi:10.1371/journal.ppat.1002846.g002
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the MCMV-specific CD4 T cell pool (Figure S2 and Text S1).

However, viral titers in the salivary gland were to some extent

reduced by selective absence of IL-10Rb on CD4 T cells,

suggesting a role for IL-10R signaling in CD4 T cells in this

particular tissue (Figure S2).

Next, we sought to investigate whether the absence of IL-10

modulates the phenotype and function of APCs and thereby

enhances the priming of virus-specific CD4 T cells. The absence of

IL-10 led to an increase of the CD11b+CD11c+MHCII+B2202

myeloid DC population, which was most pronounced at day

5.5 p.i. (Figure 3A). In contrast, the lack of IL-10 had no effect on

the CD8a+CD11c+MHCII+B2202 DC compartment, which was

reduced in numbers compared to naive control mice, but to the

same extent in B6 and Il102/2 mice. Consistent with this early

expansion of myeloid DCs, we observed a greatly increased virus-

specific CD4 T cell response already at day 5.5 p.i. (Figure 3C). In

contrast, corroborating our results from day 14 p.i. (Figure 2C),

virus-specific CD8 T cell responses were not affected by the lack of

IL-10 at day 5.5 p.i. (Figure 3C). Since the CD8a+ DC subset is

instrumental for priming of MCMV-specific CD8 T cells [16], the

fact that IL-10 does not influence this DC population could

explain why absence of IL-10 does not impact on MCMV-specific

CD8 T cell responses (Figure 3A).

Next, we analyzed the expression levels of MHCII and

costimulatory molecules on the surface of myeloid DCs

(Figure 3B). We observed a downregulation of MHCII expression

on CD8a2CD11b+CD11c+ DCs in infected mice compared to

naive controls, which was the similar for B6 and Il102/2 mice. In

Figure 3. IL-10 alters the phenotype and function of DCs. B6 and Il102/2 mice were infected with 56106 PFU Dm157 MCMV. A) Splenocytes
from infected mice were isolated at day 5.5 p.i. Representative FACS plots showing CD11c and I-A/I-E stainings of total spleen leukocytes (upper row).
Total numbers of CD11c+CD8a2CD11b+MHCII+B2202 DCs and CD11c+CD8a+MHCII+B2202 DCs from infected B6 and Il102/2 mice and naive Il102/2

mice are shown (lower row, n = 3 except for naive Il102/2 mice n = 1; data are representative for at least 3 experiments, error bars indicate the
standard deviation). B) Expression levels of I-A/I-E and costimulatory molecules CD80, CD86 and CD40. Plots are gated on CD11c+CD8a2MH-
CII+B2202DC population at day 5.5 p.i. are shown (n = 3, error bars indicates standard deviation, data are representative from at least 3 experiments).
Representative FACS pots (left column) and summary of MFI data (right column). C) Lung lymphocytes were isolated at day 5.5. p.i. and CD4 T cells
were restimulated with a pool of M14, m18, M25, M112, m139 and m142 peptides (CD4 peptide pool) and CD8 T cells were restimulated with M45
peptide. Total numbers of IFN-c+ TNF-a+ peptide specific CD4 and CD8 T cells are shown (n = 3, error bars indicate standard deviation, data are
representative from at least 3 experiments). D) Splenic CD11c+ cells isolated at day 3.5 p.i. from B6 and Il102/2 mice were enriched by MACS, loaded
with M25 peptide and incubated with the naive MACS purified CFSE labeled TCR transgenic CD4 T cells specific for the M25 protein (M25-II cells) for 3
days. The frequencies of CFSElow M25 II cells are indicated in the representative FACS plot. (n = 3 triplicates of respective cell cultures, data are
representative of 3 independent experiments). Statistical analysis was performed by 2-tailed unpaired student’s t-test (* p,0.05, ** p,0.01,
*** p,0.001).
doi:10.1371/journal.ppat.1002846.g003
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contrast, expression levels of CD80, CD86 and CD40 costimu-

latory molecules on CD8a2CD11b+CD11c+ DCs were consis-

tently higher in Il102/2 mice compared to their B6 counterparts.

These effects were most pronounced at day 5.5 p.i. but some of the

differences were already apparent at day 3.5 p.i. (data not shown).

Of note, expression levels of costimulatory molecules on

CD8a+CD11c+ DCs were comparable in B6 and Il102/2 mice,

further supporting our observation that CD8 T cell responses are

not affected by the presence or absence of IL-10 (Figure S3).

Finally, to assess the functional consequences of these phenotypic

differences in myeloid DCs of Il102/2 mice, we directly analyzed

the capacity of DCs isolated from MCMV-infected B6 or Il102/2

mice to prime MCMV-specific CD4 T cells in vitro (Figure 3D and

Text S1). To this aim, we used a monoclonal population of naive

CD4 T cells specific for an immunodominant CD4 T cell epitope

of the MCMV M25 protein [17] isolated from the spleen of a

novel TCR transgenic mouse line named M25-II (Figure S4 and

Text S1). DCs were isolated from B6 and Il102/2 mice at day

3.5 p.i., loaded with limiting amounts of M25 peptide and

incubated with CFSE-labeled M25-II CD4 T cells. Proliferation

was assessed by measuring CFSE dilution. Our results revealed

that DCs isolated from MCMV-infected Il102/2 mice supported

considerably enhanced priming capacity of TCR transgenic M25-

II cells compared to DCs from MCMV-infected B6 mice. This was

also the case for direct ex vivo antigen presenting DCs in absence of

additional peptide loading in vitro, albeit the level of proliferation

was smaller without additional peptide loading (data not shown).

Our observation that IL-10 shapes the potency of DCs to prime

virus-specific CD4 T cells already by 3.5 days p.i. suggested that

MCMV would induce early secretion of IL-10 in order to dampen

innate immune responses and to attenuate DC function,

eventually leading to impaired CD4 T cell priming. Indeed, IL-

10 levels in the serum of infected mice were detectable early upon

infection, reaching a peak at day 5 p.i. (Figure 4A). Using Il10-

GFP reporter mice, we demonstrated that MCMV induces

expression of IL-10 by various cell types, with CD4 T cells, NK

cells, DCs and macrophages being the most prominent IL-10

producers (Figure 4B). In order to dissect the in vivo relevance of

IL-10 secretion by particular cell types, we took advantage of

mixed BM chimeras in which specific cell types were unable to

produce IL-10 (Figure S5 and Text S1). Intriguingly, we identified

CD11c+ cells and to a lesser extent macrophages/neutrophils, but

not CD4 T cells, as the prominent in vivo source of IL-10 during

early MCMV infection, leading to reduced MCMV-specific CD4

T cell responses and elevated virus load during acute MCMV

infection (Figure S5).

Taken together, these data reveal that early induction of IL-10

during MCMV infection suppresses maturation of DCs, specifi-

cally targeting the myeloid CD8a2CD11b+CD11c+ subset, which

results in poor CD4 T cell priming and prolonged lytic viral

replication.

NK-like cells are crucial enhancers of CD4 T cell priming
during MCMV infection in Il102/2 mice

NK cells have recently been reported to influence the priming of

MCMV-specific CD8 T cell responses by regulating the exposure

of CD8 T cells to antigen-bearing DCs [18]. We were therefore

interested to address the impact of NK cells on the priming of

MCMV-specific CD4 T cell responses during MCMV infection in

the absence or presence of IL-10.

To evaluate the impact of NK cells on MCMV-specific CD4 T

cell priming in Il102/2 mice, we depleted NK-like cells using the

aNK1.1 antibody. Strikingly, the frequencies of MCMV-specific

CD4 T cells were massively reduced in NK-like cell depleted

Il102/2 mice to levels, which were no longer different from NK-

like cell depleted B6 mice (Figure 5A). Thus, the absence of NK-

like cells completely abolished the massive increase of MCMV-

specific CD4 T cell responses in Il102/2 as compared to B6 mice.

Consistent with a critical contribution of NK-like cells for the

priming of virus-specific CD4 T cell responses in Il102/2 mice,

depletion of NK-like cells indeed partly abolished the protective

effect of CD4 T cells observed in Il102/2 mice at day 14 post

infection (Figure 5B), since aNK1.1 depleted Il102/2 mice showed

a significantly increased viral burden compared to untreated

Il102/2 mice (Figure S6A).

Furthermore, Il102/2 mice depleted of NK-like cells showed no

significant increase in the levels of IFN-c, TNF-a and IL-12 in the

sera at day 3.5 p.i. compared to B6 controls (Figure 5C). To

evaluate the impact of NK-like cells on the development of

immunopathology in Il102/2 mice, we measured body weight loss

in B6 and Il102/2 mice treated with aNK1.1 antibody and

observed that Il102/2 mice depleted of NK-like cells were

comparable to B6 controls (Figure 5D). These data indicate that

NK-like cells are key contributors to the increased levels of pro-

Figure 4. IL-10 is produced early upon MCMV infection. B6 or Il10 GFP reporter (Tiger) mice were infected with 56106 PFU Dm157 MCMV. A)
IL-10 protein concentration was determined in the sera of infected B6 mice by IL-10 ELISA Set (BD, Biosciences) at indicated time points (n = 3, data
are representative of 2 independent experiments, error bars indicate the standard deviation). B) Lung and spleen lymphocytes were isolated from
infected Il10 GFP reporter (Tiger) mice and control littermates at day 5.5 p.i. Percentages of GFP+ cells (after substraction of background fluorescence
from littermate controls) are shown for the indicated cell populations: CD4+ cells, CD8+ cells, B220+ cells (B cells), NK1.1+CD3e2 cells (NK cells),
NK1.1+CD3e+ cells (NK T cells), CD11b+CD11c2LyG/C2 cells (monocytes/macrophages) and splenic CD11c+CD11b+MHCII+B2202 cells (myeloid DCs).
(n = 3, data are representative of 2 independent experiments, error bars indicate the standard deviation).
doi:10.1371/journal.ppat.1002846.g004
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inflammatory cytokines as well as to the pathology observed in

Il102/2mice.

Flow cytometric analysis of splenic NK cell populations revealed

that Il102/2 mice exhibited decreased numbers of NK1.1+CD32

cells upon MCMV infection (data not shown, [19]). However,

although total numbers of IFN-c+ NK1.1+CD32 cells were

unaltered in Il102/2 mice (not shown), NK cells from MCMV-

infected Il102/2 mice showed increased per cell expression levels of

IFN-c already at day 3.5 p.i. compared to NK cells from MCMV-

infected B6 mice (Figure 5E). Moreover, the numbers of TNF-a
producing NK cells were massively increased in Il102/2 mice

compared to B6 controls and NK cells from MCMV-infected

Il102/2 mice displayed higher expression levels of the NKG2D and

NCR-1 activating receptors compared to B6 controls (Figure 5E).

Taken together, these data demonstrate that in the absence of IL-

10 NK-like cells provide critical help to virus-specific CD4 T cells,

which results in better control of lytic virus replication in Il102/2

mice. Conversely, the hyper-activated phenotype of NK cells in

Il102/2 mice results in early high levels of systemic pro-

inflammatory cytokines, which either directly or in combination

with MCMV-specific CD4 T cell-derived cytokines promote

development of pathology.

Figure 5. NK-like cells are responsible for enhanced MCMV-specific CD4 T cell response in Il102/2 mice. B6 and Il102/2 mice were
infected with 56106 PFU Dm157 MCMV. A–D) B6 and Il102/2 mice were either mock treated or depleted of NK-like cells using aNK1.1 (PK136)
antibody. A) Lymphocytes from lungs were isolated at day 5.5. p.i. and ex vivo restimulated with a pool of M14, m18, M25, M112, m139 and m142
peptides (CD4 peptide pool). Percentages of IFN-c+TNF-a+ peptide specific CD4 cells are shown (n = 3, error bars indicate standard deviation, data are
representative from at least 3 experiments). B) Virus titers were determined in salivary glands at day 14 p.i. Each symbol represents one individual
mouse, horizontal line indicates the mean, dashed line indicates detection limit (n = 3, data are representative of 2 independent experiments). C) IFN-
c, TNF-a and IL-12 protein concentrations were determined in the sera of B6 and Il102/2 mice at day 3.5 p.i. Each symbol represents one individual
mouse, horizontal line indicates the mean (n = 3, data are representative of 2 independent experiments). D) Body weight change of B6 and Il102/2

mice was measured at the indicated time points. Changes in percentage of body weight relative to day 0 are shown. Each symbol represents the
mean of 3 mice per group; vertical bars indicate the standard deviation. Data are representative of 3 independent experiments. E) Splenic
NK1.1+CD3e2 NK cells (NK) were isolated from B6 and Il102/2 mice at day 3.5 p.i. Total numbers of IFN-c+ NK cells and MFI of IFN-c+ in NK cells are
shown (upper panel). Total numbers of TNF-a+ NK cells and expression levels of NKG2D and NCR-1 on NK cells are shown (lower panel). Error bars
indicate standard deviation; n = 3, data are representative of 3 independent experiments. Statistical analysis was performed by 2-tailed unpaired
student’s t-test (* p,0.05, ** p,0.01, *** p,0.001).
doi:10.1371/journal.ppat.1002846.g005

IL-10 Impairs NK/DC Synergy and CD4 T Cell Priming

PLoS Pathogens | www.plospathogens.org 7 August 2012 | Volume 8 | Issue 8 | e1002846



NK-like cells are the main contributors promoting
maturation of DCs in Il102/2 mice during MCMV
infection

Next we analyzed the mechanism by which NK cells promote

MCMV-specific CD4 T cell responses in the absence of IL-10. To

this end, we first determined the DC phenotype and priming

capacity in the absence of NK-like cells. Il102/2 and B6 mice were

depleted of NK-like cells and splenic DCs were analyzed by flow

cytometry at day 5.5 p.i. Increased numbers of splenic myeloid DCs

observed in Il102/2 mice were not seen in the absence of NK-like

cells (Figure 6A). Furthermore, expression levels of costimulatory

molecules on the surface of DCs from aNK1.1 treated Il102/2 and

B6 mice were determined by flow cytometry (Figure 6B). Interest-

ingly, when NK-like cells were depleted from Il102/2 mice, no

differences were observed any longer in the expression levels of

costimulatory molecules compared to aNK1.1 treated B6 mice.

Thus, in the absence of IL-10, NK-like cells are the main

contributors promoting maturation of DCs.

Next, the CD4 T cell priming capacity of DCs isolated from

MCMV-infected mice in the absence of NK-like cells was tested.

DCs were isolated from MCMV-infected B6 and Il102/2 mice

Figure 6. NK-like cells promote DC maturation in Il102/2 mice. B6 and Il102/2 mice were infected with 56106 PFU Dm157 MCMV and were
either mock treated or depleted of NK-like cells using aNK1.1 (PK136) antibody. A) Splenocytes from infected mice were isolated at day 5.5 post
infection. Total numbers of CD11c+MHCII+B2202 DCs and CD11c+CD11b+MHCII+B2202 DCs from infected B6 and Il102/2 mice and naive Il10 2/2

mice are shown (n = 3, error bars indicates standard deviation, data are representative of 3 experiments). B) Expression levels of MHCII and
costimulatory molecules CD80, CD86 and CD40 at day 5.5 p.i. Plots are gated on CD11c+CD11b+MHCII+B2202 DCs. Representative FACS pots (left
column) and summary of MFI data (right column, n = 3, error bars indicates standard deviation, data are representative of 3 experiments). C) Splenic
CD11c+ cells isolated at day 3.5 p.i. from NK-like depleted or undepleted B6 and Il102/2 mice were enriched by MACS, loaded with M25 peptide and
incubated with MACS purified naive CFSE-labeled TCR transgenic M25-II CD4 T for 3 days. The ratio between CFSElow M25-II cells in cultures with
Il102/2 and B6 DCs is shown (n = 3 triplicates of respective cell cultures, data are representative of 2 independent experiments). Statistical analysis
was performed by 2-tailed unpaired student’s t-test (* p,0.05, ** p,0.01, *** p,0.001).
doi:10.1371/journal.ppat.1002846.g006
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that had been treated or not with aNK1.1 antibody and incubated

with naive CFSE labeled TCR transgenic M25-II CD4 T cells.

The analysis of CFSE dilution revealed that the marked difference

in the priming capacity of naive M25-II CD4 T cells between B6

and Il102/2 mice was no longer observed when DCs from

aNK1.1 treated mice were used as APCs (Figure 6C and Text S1).

Unleashed NK/DC crosstalk drives the efficiency of CD4 T
cell priming in Il102/2 mice

Having shown that IL-10 suppresses the ability of NK-like cells

to promote DC maturation and their CD4 T cell priming

capacity, we aimed at identifying the underlying mechanism by

which IL-10 dampens NK/DC crosstalk and priming of CMV-

specific CD4 T cells. Previous reports have documented that NK

cells can interact with DCs to shape the course of the innate as well

as adaptive immune response [20]. This NK/DC crosstalk leads to

reciprocal activation, which depends on cytokines and/or mem-

brane receptor engagement. NK cell derived IFN-c and TNF-a
play important roles in promoting IL-12 production by DCs.

Conversely, DC secretion of IL-12 and IL-18 enhances cytokine

production of NK cells [21]. Moreover, NK/DC cell to cell

contact has been implied to be important in the bidirectional

cross-talk between these cell types. To identify the factors involved

in NK/DC interactions that could promote CD4 T cell priming in

the absence of IL-10, we established an in vitro co-culture system

with purified populations of NK cells, DCs and virus-specific CD4

T cells. NK cells were purified from B6 and Il102/2 mice at day

3.5 p.i. and co-cultured with M25 peptide-loaded DCs isolated

from naive mice together with naive CFSE-labeled TCR

transgenic M25-II CD4 T cells. This experimental set-up, where

only NK cells were isolated from MCMV infected mice, allowed

us to directly dissect whether NK cells impact on the capacity of

DCs to prime virus-specific CD4 T cells. Indeed, DCs co-cultured

with NK cells from MCMV infected Il102/2 mice showed an

increased priming capacity of naive virus-specific CD4 T cells

compared to DCs co-cultured with the same number of NK cells

isolated from MCMV infected B6 mice (Figure 7A). Comparably

increased proliferation of MCMV-specific CD4 T cells was

obtained when DCs were co-cultured with NK cells from MCMV

infected B6 mice in presence of an IL-10R blocking antibody (data

not shown). To identify the factors involved in these NK/DC

interactions we preformed the same in vitro co-cultures as described

above, including neutralization of IFN-c, TNF-a and blocking of

activating NK cell receptors NKG2D and NCR-1. Interestingly,

neutralization or blocking of any of those factors did not have an

influence on CD4 T cell priming when NK cells had been isolated

from infected B6 mice (Figure 7B). In contrast, when NK cells had

been isolated from Il102/2 mice, neutralization of IFN-c and

TNF-a as well as blocking of NKG2D and NCR-1 significantly

decreased the priming of virus-specific CD4 T cells (Figure 7C).

Moreover, based on our in vitro results, we tested whether some of

the factors which modulated NK/DC crosstalk in vitro would also

promote MCMV-specific CD4 T cell priming and expansion in

vivo. We therefore administered neutralizing aIFN-c, aTNF-a and

blocking aNKG2D antibodies (Figure 7 D, E). These treatments

increased the viral loads to the same extent in B6 and Il102/2

mice, compared to mock treated mice at early time points (Figure

S6B). Strikingly, the fold increase in frequencies of MCMV-

specific CD4 T cell responses was no longer different between B6

and Il102/2 mice when IFN-c or TNF-a were neutralized or

NKG2D was blocked in vivo (Figure 7D, E). Of note, in vivo

neutralization of IFN-c and TNF-a also abrogated the increased

expression levels of NKG2D and NCR-1 on NK cells normally

observed in Il102/2 mice to levels indistinguishable from NK cells

in B6 mice (data not shown), suggesting that increased levels of the

pro-inflammatory cytokines IFN-c and TNF-a in MCMV infected

Il102/2 mice presumably trigger NK cell activation more

efficiently compared to B6 controls, resulting in the upregulation

of NKG2D and NCR-1 receptors on the surface of NK cells.

Next, we hypothesized that IL-10 produced by NK cells

(Figure 4B) could be directly sensed by DCs which would result in

impaired NK/DC crosstalk and would hence account for the poor

CD4 T cell priming observed in B6 mice. In support of this

hypothesis, when DCs were isolated from naive Il10r2/2 mice and

co-cultivated with NK cells from infected B6 mice together with

naive CFSE-labeled M25 II CD4 T cells (Figure 7F), the

proliferation of M25 II cells was much more pronounced

compared to the situation where DC were isolated from naive

B6 mice (Figure 7F and B). Furthermore, also in this situation

neutralization of IFN-c and TNF-a as well as blocking of NKG2D

and NCR-1 decreased the proliferation of M25 II cells (Figure 7F).

Finally, as we had previously shown that DC-derived IL-10

suppresses MCMV-specific CD4 T cell responses in vivo (Figure

S5), we also tested in a similar co-culture setup whether IL-10

production by DCs influenced their CD4 T cell priming capacity.

To this end, NK cells from MCMV infected B6 mice were co-

incubated with naive DCs from B6 or Il102/2 mice and

proliferation of M25 II cells was assessed. Consistent with the in

vivo role of DC-derived IL-10 production, M25 II proliferation was

enhanced in co-cultures with Il102/2 DCs (Figure S7), suggesting

that DCs can produce IL-10 in response to NK cell derived factors

induced by MCMV infection, and that this autocrine suppressive

effect, in addition to IL-10 production by NK cells, may also play

an important role in balancing the outcome for the virus-specific

CD4 T cell priming in vivo.

To test whether DCs have to sense IL-10 in vivo to suppress

MCMV-specific CD4 T cell responses, we infected mice that

specifically lack IL-10Ra on CD11c+ DCs (DC-Il10r2/2, [22],

Figure 7G). Indeed, MCMV-specific CD4 T cell responses were

increased in these mice compared to controls (Il10rflox/flox).

However, CD4 T cell responses were still more pronounced in

total than in DC-specific Il10r2/2 mice. These data suggest that

DCs are one, but not the only cell type that senses and is regulated

by IL-10. It is likely that NK cells themselves are as well amongst

the earliest targets of IL-10 upon MCMV infection to curtail their

activation and cytokine production.

Taken together, these data corroborate the importance of NK

cells as promoters of DC activation and maturation and

subsequent CD4 T cell priming in MCMV infected Il102/2

mice, namely by providing soluble mediators such as IFN-c and

TNF-a, as well by cell to cell contact with involvement of the

NKG2D and NCR-1 receptor. In contrast, the intensity of NK/

DC synergy is markedly diminished in the presence of IL-10

leading to poor CD4 T cell priming with both DC and NK cells

presumably being the early and important targets as well as

sources of IL-10.

Conversely, it is known that DCs in turn can also promote

activation of NK cells. IL-12 is one of the DC-derived cytokines

that stimulates NK cell cytokine production. Moreover, IL-10

influences the IL-12/IFN-c positive feedback loop during NK/DC

crosstalk [23], but the consequences of these regulatory effects on

the adaptive immune response during viral infections remain

largely unknown. Since Il102/2 mice produced more IL-12 in

response to MCMV and NK1.1. depleted Il102/2 mice showed

decreased levels of IL-12 (Figure 5C), we sought to define the

impact of IL-12 on the induction of NK cell and virus-specific

CD4 T cell responses in the absence of IL-10 (Figure 8). aIL-12/

p40 antibody-mediated neutralization of IL-12 reduced NK cell
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secretion of IFN-c in B6 as well in Il102/2 mice, and secretion of

NK cell derived TNF-a was markedly reduced in Il102/2 mice to

the levels of B6 controls on day 5.5 p.i. (Figure 8A). Consistent

with the role of NK cells in promoting MCMV-specific CD4 T cell

priming in absence of IL-10, CD4 T cell responses were no longer

increased in Il102/2 mice compared to B6 mice when IL-12 was

neutralized in vivo (Figure 8B). Albeit neutralization of IL-12 led to

increased viral loads at day 5.5 p.i., this increase in viral load was

comparable in B6 and Il102/2 mice (Figure S6C). These data

show that IL-12 plays a potent role in the activation of NK cells in

Il102/2 mice by promoting NK cell cytokine production and IL-

12 thereby contributes indirectly to increased virus-specific CD4 T

cell responses in Il102/2 mice.

Collectively, these data establish that IL-10 critically dampens

the strength of the NK/DC crosstalk and thereby suppresses

MCMV-specific CD4 T cell responses (Figure S11). Absence of

IL-10 during MCMV infection unleashes a potent positive

feedback loop between NK cells and DCs: NK cells produce

more IFN-c and TNF-a in MCMV-infected Il102/2 mice and, in

combination with NKG2D and NCR-1 receptor engagement,

promote DC activation which in turn facilitates priming of

MCMV-specific CD4 T cells. Furthermore, DCs from MCMV-

infected Il102/2 mice produce more IL-12, leading to exacerbated

activation of NK cells and consequently virus-specific CD4 T cells.

Unleashed NK/DC crosstalk in MCMV-infected Il102/2 mice

therefore enables enhanced control of lytic viral replication via

more potent activation of MCMV-specific CD4 T cell immunity,

albeit at the expense of increased host pathology.

Discussion

In order to regulate T cell mediated immunity during infections,

in particular during chronic types of infection, IL-10 exerts

pleiotropic direct and indirect suppressive effects towards different

cell types of the innate and adaptive immune response [24]. The

presence of an IL-10-mediated anti-inflammatory condition

during early phases of an immune response can negatively affect

the size and quality of the ensuing adaptive immune response.

Such suppression of adaptive immunity may be pivotal in

preventing harmful immune-mediated tissue damage for the host,

Figure 7. Unleashed NK/DC crosstalk promotes CD4 T cell priming in Il102/2 mice. B6 and Il102/2 mice were infected with 56106 PFU
Dm157 MCMV. A–C,F) DX5+CD32 (NK) cells were isolated from B6 and Il102/2 mice by MACS at day 3.5 p.i. Splenic DCs were isolated from naive B6
(A–C) mice or naive Il10r2/2 mice (F) by enrichment for CD11c+ cells. MCMV-specific CD4 T cells were isolated by MACS from spleens of naive M25-II
mice and labeled with CFSE. CD11c+ cells were loaded with M25 peptide and co-cultured with CFSE-labeled M25-II cells without (no NK) or with
addition of DX5+CD32 (NK) cells isolated from B6 (A, B, F) or Il102/2 (A, C) mice. As indicated, blocking antibodies for IFN-c, TNF-a, NKG2D and NCR-1
were added to cultures. The frequencies of CFSElow M25 II cells are shown. (n = 3, data are representative of 3 independent experiments). Dotted lines
indicate the mean level of M25-II CFSE dilution in cultures without NK cells (no NK). D, E) B6 and Il102/2 mice were treated in vivo with aIFN-c
antibodies at days 3 and 4 p.i. (D); with aTNF-a and aNKG2D antibodies at days 0, 3, 4 p.i. (E). Lymphocytes from lungs of infected mice were isolated
at day 5.5 p.i. and ex vivo restimulated with a pool of M14, m18, M25, M112, m139 and m142 peptides (CD4 peptide pool). Fold increase (D, E) of IFN-
c+ TNF-a+ peptide specific CD4 cells between Il102/2 and B6 mice is shown (n = 3, error bars indicates standard deviation, data are representative for
3 experiments). G) DC- Il10rflox/flox, Il10rflox/flox and Il10r2/2 mice were infected with 56106 PFU Dm157 MCMV. Lymphocytes from lungs were
restimulated with the CD4 peptide pool. Total numbers of IFN-c+ TNF-a+ peptide-specific CD4 cells are shown. (n = 3, data are pooled from 2
independent experiments). Statistical analysis was performed by 2-tailed unpaired student’s t-test (* p,0.05, ** p,0.01, *** p,0.001).
doi:10.1371/journal.ppat.1002846.g007

IL-10 Impairs NK/DC Synergy and CD4 T Cell Priming

PLoS Pathogens | www.plospathogens.org 10 August 2012 | Volume 8 | Issue 8 | e1002846



but as a consequence is often associated with increased pathogen

burden. For these reasons, viruses that cause chronic infections

often exploit the IL-10 pathway in order to modulate the virus-

host balance towards their own benefit. Here we establish that IL-

10 markedly impairs priming of MCMV-specific CD4, but not

CD8 T cell responses, by selectively attenuating maturation of

CD8a2CD11b+CD11c+ myeloid DCs, which are crucial for the

activation of MCMV-specific CD4 T cells. In contrast, IL-10 does

not affect CD8a+ lymphoid organ-resident DCs, which are pivotal

for the priming of MCMV-specific CD8 T cells [16]. This

impaired MCMV-specific CD4 T cell priming in the presence of

IL-10 results in prolonged MCMV replication together with

limited TNF-a mediated immunopathology. Furthermore, we find

that NK cells are a critical component promoting the maturation

of myeloid DCs during MCMV infection of Il102/2 mice, since

depletion of NK cells in Il102/2 reduces MCMV-specific CD4 T

cell priming to levels observed in B6 mice. In the absence of IL-10,

NK cells produce more IFN-c and TNF-a, promoting, in

combination with NKG2D and NCR-1 receptor engagement,

the functional potency of MCMV-specific CD4 T cell priming by

myeloid DCs. Moreover, in the absence of IL-10, DCs secrete

more IL-12, which enhances activation and cytokine release of

NK cells. Thus, the increased intensity of the NK/DC crosstalk

plays a critical role for the massive priming of MCMV-specific

CD4 T cell responses in the absence of IL-10. The downstream

effect of an increased MCMV-specific CD4 T cell response in

absence of IL-10 is accelerated control of lytic MCMV replication,

which is, however, associated with more severe immunopathology.

Opposed to our results, immune-stimulatory effects of IL-10 on

NK cells have also been reported, but mainly coming from in vitro

studies [25–27]. In contrast to these in vitro data, a number of

published in vivo studies [28,29] also support a suppressive rather

than activating effect of IL-10 on NK cells during an inflammatory

response.

In our study, we used an MCMV mutant which lacks the m157

gene, thereby abolishing the direct activation of NK cells via

Ly49H. We aimed to assess whether strong NK cell activation

through Ly49H would lead to dominance of NK cell cytotoxic

activity towards DCs in the absence of IL-10, thus resulting in an

impaired rather than an increased virus-specific CD4 T cell

response in Il102/2 mice. However, this was not the case, since we

corroborated our main findings by infecting mice with wt MCMV:

Il102/2 mice harbored reduced virus loads 2 weeks post infection

and virus-specific CD4 T cell priming was significantly increased

in Il102/2 mice compared to B6 mice already at day 5.5 post

infection (Figure S8). Furthermore, CD8a2CD11b+ myeloid DCs

were markedly influenced in their activation phenotype in Il102/2

mice compared to B6 mice with higher expression levels of

costimulatory markers (Figure S9B, C). Moreover, NK-like cells

played a crucial role in promoting maturation of myeloid

CD8a2CD11b+ DCs and CD4 T cell priming in the absence of

IL-10, since depletion of NK-like cells abolished the enhanced

activation phenotype of CD8a2CD11b+ DCs and CD4 T cell

response in Il102/2 mice to the level of B6 control mice depleted

of NK-like cells (Figure S9A). Furthermore, when we used a lower

dose of viral inoculum, IL-10 suppression of NK/DC crosstalk and

CMV-specific CD4 T cell priming was observed, indicating that

the described effects are prominent even when the overall extent of

inflammation is reduced (Figure S10).

Attenuation of DC maturation and function is a strategy

actively exploited by herpes viruses to compromise the adaptive

immune response of the host and thereby to prolong replication

and consequently the chance for horizontal transmission. HCMV

encodes an IL-10 homolog (cmv-IL10), which exerts suppressive

effects on DC maturation, migration and cytokine secretion [5].

Here we document the importance of IL-10 in regulating the

magnitude of this NK/DC crosstalk during MCMV infection with

direct impact for the induction of adaptive antiviral immunity.

NK/DC cell to cell contact has been implied to be important in

the cross-talk between these cell types. DCs are important targets

of MCMV infection and the NKG2D receptor is considered to be

involved in mutual interactions of NK cells and MCMV-infected

DCs. However, the exact mechanism of this interaction still

remains unknown. We observed that NK cells from Il102/2 mice

show increased levels of the NKG2D and NCR-1 activating

receptors as well as increased production of TNF-a and IFN-c per

cell level compared to B6 controls and we showed that all of those

critically promote NK/DC crosstalk resulting in augmented virus-

specific CD4 T cell priming. We have not considered a role of

other NK cell receptors in this study, but it is conceivable that an

overall threshold of signals coming from activatory and inhibitory

NK cell receptors is shifted in the absence of IL-10.

Recently, in the context of HIV infection, it has been shown

that IL-10 induction leads to changes in DC compartments and

suppresses NK killing of immature DCs, thus promoting

accumulation of poorly immunogenic APCs, which contribute to

the immune dysfunction observed in HIV patients [30]. In the

context of HCV infection, expression of the NKG2A inhibitory

receptor on NK cells was shown to trigger production of the

immunosuppressive cytokines IL-10 and TGF-b by NK cells,

Figure 8. IL-12 contributes to enhanced CD4 T cell priming in
Il102/2 mice. B6 and Il102/2 mice were infected with 56106 PFU
Dm157 MCMV and treated in vivo with aIL-12 antibody at days 0, 3,
4 p.i. A) Splenic NK1.1+CD3e2 NK cells (NK) were isolated from B6 and
Il102/2 mice at day 3.5 p.i. Total numbers of IFN-c+ NK and TNF-a+ cells
are shown (error bars indicate standard deviation; n = 3, data are
representative of 2 independent experiments). B) Lymphocytes were
isolated from lungs at day 5.5 p.i. and ex vivo restimulated with the CD4
peptide pool. Fold increase in IFN-c+ TNF-a+c peptide specific CD4 T
cells between Il102/2 and B6 is shown (n = 3, error bars indicates
standard deviation, data are representative from 3 independent
experiments). Statistical analysis was performed by 2-tailed unpaired
student’s t-test (** p,0.01, *** p,0.001, n.d. = not detected).
doi:10.1371/journal.ppat.1002846.g008
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which suppressed the ability of DCs to prime Th1 polarized CD4

T cells [31].

The impact of NK cells on the regulation of virus-specific T cell

responses during persistent infections has been evaluated in several

studies. On one hand, NK cells promote MCMV-specific CD8 T

cell responses by regulating the production of type I IFN by

plasmacytoid DCs [32]. Moreover, strong activation of NK cells

achieved by the use of recombinant Rae1c MCMV virus induces

protective CD8 T cell immunity and antibody responses [33]. In

contrast, NK cells can also reduce the magnitude of T cell

responses by directly lysing antigen-bearing immature DCs and

thus curtailing T cell priming [21]. Ly49H-expressing NK cells

lyse infected conventional DCs upon MCMV infection, thereby

limiting virus-specific CD8 T cell priming [18]. IL-10 production

by Ly49H expressing NK cells during uncontrolled MCMV

infection of Prf12/2 mice has been suggested to play an important

role in limiting CD8 T cell responses and immunopathology [34].

Moreover, very recent reports have shown that NK cells can have

a direct cytotoxic effect towards activated CD4 and CD8 T cells

during chronic LCMV Clone 13 infection with an impact on

virus-induced immunopathology [35,36]. Thus, there seems to be

a controversy with two opposing effects of NK cells in either

promoting or suppressing virus-specific T cell responses during

viral infection. It has been proposed that the ratio of NK cells and

DCs could direct the role of NK cells either towards promotion or

restriction of virus-specific T cell responses in vivo [18,37].

Specifically, the presence of high numbers of NK cells vs. DCs

during an infection would lead to predominance of NK cell

cytotoxicity towards immature DCs, suppressing the priming of

virus-specific T cells. In contrast, low numbers of NK cells vs. DCs

would lead to NK/DC interactions that stimulate priming of the

virus-specific T cell response. Taking into account that IL-10

reduces activation-induced NK cell death and accumulation of

cytotoxic NK cells during the acute phase of MCMV infection

[19], one could argue that early induction of IL-10 during MCMV

infection may lead to high NK/DC ratios, a scenario in which NK

cells suppress T cell priming by lysing DCs. Our data are in line

with such a hypothesis, since we demonstrate that immunogenic

NK/DC crosstalk is attenuated and overridden by IL-10 with

direct consequences for the induction of protective CD4 T cell

immunity.

Upon infection, IL-10 can be secreted by many different cell

types [3]. T and B cells, DCs, macrophages and NK cells produce

IL-10 during various chronic viral infections [24]. During MCMV

infection, IL-10 secretion by CD4 T cells and B cells, inflamma-

tory macrophages and DCs has been reported [7,19,38]. Here we

confirmed that MCMV infection induces IL-10 production,

assessed by IL-10 reporter activity, by various cell types, including

myeloid DCs, macrophages, NK cells, CD4 T cells and B cells.

Thus, the relative contribution of each IL-10 producing cell type

to the overall in vivo effects of this immunosuppressive cytokine is

likely very complex and it might also differ depending on the tissue

and the time of infection. We identified CD11c+ cells and to some

extent macrophages, but not CD4 T cells, to be important in vivo

sources of IL-10 during acute MCMV infection using mixed bone

marrow chimeras in which specific cell types were IL-10 deficient.

Although CD4 T cells showed prominent IL-10 reporter activity

during MCMV infection, CD4 T cell derived IL-10 was

dispensable for constraining MCMV-specific CD4 T cell responses

and virus control. This discrepancy either indicates that IL-10

reporter activity does not accurately reflect IL-10 protein

production in vivo, perhaps due to posttranscriptional regulation

as shown for NK cells [39], or that CD4 T cell-derived IL-10 does

not contribute to suppress MCMV-specific CD4 T cell responses

because of potential anatomical or kinetic constraints of the IL-10

source which are not met by CD4 T cells. Also, it will be of interest

to assess the in vivo role of NK cells as an early source of IL-10

during MCMV infection in future studies.

A recent report addressed the impact of IL-10 on MCMV-

specific CD8 T cell responses during the latent phase of MCMV

infection [13]; although IL-10 did not alter early priming of

MCMV-specific CD8 T cells, it limited CD8 T cell memory

inflation. It is conceivable that the increased memory CD8 T cell

inflation in the absence of IL-10 is a direct consequence of the

greatly increased MCMV-specific CD4 T cell response, as CD4 T

cells support memory CD8 T cell inflation [40]. In line with this

hypothesis, CD8 T cells specific for the IE-3 epitope, previously

shown to be highly dependent on CD4 T cell help [40,41], were

profoundly increased in Il102/2 mice.

In conclusion, we identified an important role of IL-10 during

early MCMV infection and its impact for priming of MCMV-

specific CD4 T cell responses. By suppressing the innate-adaptive

immune cell crosstalk and, in particular, regulating the strength of

NK/DC interactions, IL-10 specifically limits the activation of

virus-specific CD4 T cells, which in turn leads to reduction of host

tissue damage but promotes virus persistence in the long run (Fig.

S11). These two opposing effects of IL-10 in regulating the virus-

host balance during primary CMV infection should be taken into

account when considering therapeutic properties of this immuno-

suppressive cytokine.

Materials and Methods

Ethics statement
This study was conducted in accordance to the guidelines of the

animal experimentation law (SR 455.163; TVV) of the Swiss

Federal Government. The protocol was approved by Cantonal

Veterinary Office of the canton Zurich, Switzerland (Permit

number 145/2008, 109/2011).

Mice, viruses, peptides and in vivo antibody treatment
C57BL/6J, Il102/2, Il10rb2/2 mice were bred in the local

animal facility under specific pathogen free conditions. Il10 GFP

knock-in Tiger mice were generated and provided by Dr. R. A.

Flavell (Yale University, USA). DC-Il10r2/2 [22] and CD11c-

DTR/GFP mice [42] were previously described and LysMCre/

iDTR mice were kindly provided by Dr. T. Buch (Technical

University, Munich, Germany). BAC-derived MCMV MW97.01

(WT MCMV in the text) and recombinant MCMV Dm157 were

previously described [17] and were propagated on C57BL/6

embryonic fibroblasts (MEFs). Viral titers were determined by

standard virus plaque assay [43]. Mice were infected intravenously

(i.v.) with 56106 plaque forming units (PFU) of MCMV. The

MCMV derived m14aa136–150, M25aa411–425, M25aa721–735,

M112aa36–50, m142aa26–40 m139560–574, M45aa985–993, M38aa316–323

peptides were purchased from NeoMPS (Strasbourg, France).

CD8 and CD4 T cells were depleted in vivo with 0.2 mg of

purified anti-mouse CD8 and anti-mouse CD4 monoclonal

antibodies (YTS 169.4 respectively YTS 191.1). Mice were

injected i.p. 3 and 1 days before infection and then weekly. NK-

like cells were depleted with 0.5 mg of anti-NK.1.1 monoclonal

antibody (PK136, BioXCell). Mice were injected i.p. at the day 1

before infection and every second day post infection. TNF-a,

IFN-c and IL-12 were neutralized with 0.5 mg of anti-TNF-a
(XT3.11, BioXCell), anti-IFN-c (XMG1.2, BioXCell) and anti-

IL-12 (C17.8, BioXCell) antibodies and NKG2D was neutralized

with 0.5 mg of anti-NKG2D (HMG2D, BioXCell) antibody.

Mice were injected i.p. at day of infection and on days 3 and 4
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post infection except for anti-IFN-c where mice were injected at

day 3 and 4 post infection.

Antibodies and tetramers
APC-conjugated peptide-MHC class I tetramers were generated

as described (Altman JD, 1996). The following fluorochrome-

conjugated antibodies were obtained either from Biolegend

(Lucerna-Chem AG, Luzern, Switzerland) or from BD Biosciences

(Allschwil, Switzerland): anti-CD4, anti-CD8, anti-NK1.1, anti-

CD3e, anti-TCRVa11.1, anti-CD11c, anti-CD11b, anti-B220,

anti-I-Ab, anti-Ly6C, anti-TNF-a, anti-IFN-c, anti-CD45.1, anti-

CD40, anti-CD86, anti-CD80 and anti-NKG2D.

Stimulation of lymphocytes, cell surface and intracellular
stainings and flow cytometry

Lymphocytes were isolated from spleen, lung, liver, lymph

nodes and salivary gland as previously described [17,44]. For

intracellular cytokine stainings, CD4 T cells were first stimulated

with 3 mg/ml of CD4 peptide pool (m14aa136–150, M25aa411–425,

M25aa721–735, M112aa36–50, m142aa26–40 m139560–574) and CD8 T

cells were restimulated with 1 mg/ml of M45aa985–993, M38aa316–

323 peptides in the presence of 10 mg/ml brefeldin A (Sigma

Aldrich) at 37uC for 6 hours. Cells were stained for cell surface

markers with directly conjugated antibodies and incubated for

20 min at 4uC or at 37uC when using tetramers. For intracellular

cytokine stainings cells were then fixed and permeabilized using

Fix/Perm solution (FACSLyse diluted to 2X concentration and

0.05% Tween 20) for 10 min at room temperature. Cells were

then washed and stained with directly labeled anti-IFN-c and anti-

TNF-a antibodies for 20 min at 4C. Multiparameter FACS

analysis was performed on a LSRII flow cytometer (BD

Bioscience) using FACS DIVA software (BD Bioscience). Data

were analysed using FlowJo software (Treestar).

CD4 T cell proliferation assay
M25-II cells were isolated by MACS from splenocytes of naive

M25-II transgenic mice by positive selection with anti-CD4

microbeads (Miltenyi Biotech). Cells were labeled with 0.5 mM

CFSE (Invitrogen) for 8 min at 37uC. CD11c+ cells were isolated

by MACS from spleens of B6 and Il102/2 mice by positive

selection with anti-CD11c microbeads (Miltenyi). 16105 CD11c+

cells of infected B6 and Il102/2 mice were loaded with 1028 M of

M25 peptide and co-cultured with 66104 CFSE labeled M25-II

cells. After 3 days of incubation, cells were stained with anti-CD4

and anti-CD45.1 antibodies and CFSE dilution was measured by

flow cytometry.

NK/DC/CD4 T cell proliferation assay
M25-II cells were isolated and CFSE labeled as described

above. Naive CD11c+ cells were isolated from the spleens of B6

and Il10r2/2 mice as described above. NK cells were isolated from

the spleens of infected B6 and Il102/2 mice at day 3.5 post

infection as previously described [45]. Briefly, splenocytes were

first negatively depleted of T cells using FITC-conjugated anti-

CD3e and anti-FITC microbeads (Miltenyi). NK cells were then

positively selected by staining the T cell-depleted fraction with

anti-DX5 beads (Miltenyi). 26105 of purified NK cells were co-

cultured with 66104 CFSE labeled M25-II cells and 16104

CD11c+ cells in 96-U bottom plates and treated with or without

50 mg/ml anti-IFN-c, 50 mg/ml anti-TNF-a or 3 mg/ml anti-

NKG2D antibodies (all purchased from BioXcell) and 5 mg/ml of

purified NCR-1 monoclonal antibody (provided by Prof. S. Jonjic).

After 3 days of incubation, cells were stained with anti-CD4 and

anti-CD45.1 antibodies and CFSE dilution was measured by flow

cytometry.
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