176 research outputs found

    Robustness tests for an optical time scale

    Get PDF
    Optical clocks have reached such an impressive accuracy and stability that the future redefinition of the second will be probably based on an optical transition. Consequently, building time scales based on optical clocks has become a key problem. Unfortunately, optical clocks are still laboratory prototypes and are not yet capable of long times of autonomous operation. It is hence critical to understand the impact of this limited optical clock availability on the generated time scale. In this work, after describing a simple and effective optical time scale algorithm, based on the steering of a flywheel oscillator towards the optical clock, we investigate in detail the impact of the limited availability of the optical clock on the performances of the steering algorithm and of the generated time scale through numerical simulations. In particular, we simulate a time scale generated by a hydrogen maser (with a flicker floor of 5.5 x 10(-16)) steered towards an optical clock, by considering six different scenarios for the availability of the latter, spanning from the ideal one, i.e. continuous operation of the optical clock, to the worst one, i.e. non-uniformly distributed frequency measurements with long unavailability periods. The results prove that the steering algorithm is robust and effective despite its very simple implementation, and it is capable of very good performances in all the considered scenarios, provided that the hydrogen maser behaves nominally. Specifically, they show that a time scale with an accuracy of a few hundreds of picoseconds can be easily realized in the ideal scenario, whereas in a more realistic scenario, with one measurement per week only, the time accuracy is nonetheless of a few nanoseconds, competing with the best time scales currently realized worldwide. The performances degradation due to a non-nominal maser behaviour is also discussed

    Time–frequency analysis of the Galileo satellite clocks: looking for the J2 relativistic effect and other periodic variations

    Get PDF
    When observed from the ground, the frequency of the atomic clocks flying on the satellites of a Global Navigation Satellite System is referred to as apparent frequency, because it is observed through the on-board signal generation chain, the propagation path, the relativistic effects, the measurement system, and the clock estimation algorithm. As a consequence, the apparent clock frequency is affected by periodic variations of different origins such as, for example, the periodic component of the J2 relativistic effect, due to the oblateness of the earth, and the clock estimation errors induced by the orbital estimation errors. We present a detailed characterization of the periodic variations affecting the apparent frequency of the Galileo clocks, obtained by applying time–frequency analysis and other signal processing techniques on space clock data provided by the European Space Agency. In particular, we analyze one year of data from three Galileo Passive Hydrogen Masers, flying on two different orbital planes. Time–frequency analysis reveals how the spectral components of the apparent frequency change with time. For example, it confirms that the amplitude of the periodic signal due to the orbital estimation errors depends on the angle between the sun and the orbital plane. Moreover, it allows to find a more precise estimate of the amplitude of the J2 effect, in agreement with the prediction of the general theory of relativity, and it shows that such amplitude suddenly decreases when the corresponding relativistic correction is applied to the data, thus validating the analytical formula used for the correction

    Time-frequency analysis of the Galileo satellite clocks: looking for the J2 relativistic effect and other periodic variations

    Get PDF
    When observed from the ground, the frequency of the atomic clocks flying on the satellites of a Global Navigation Satellite System is referred to as apparent frequency, because it is observed through the on-board signal generation chain, the propagation path, the relativistic effects, the measurement system, and the clock estimation algorithm. As a consequence, the apparent clock frequency is affected by periodic variations of different origins such as, for example, the periodic component of the J2 relativistic effect, due to the oblateness of the earth, and the clock estimation errors induced by the orbital estimation errors. We present a detailed characterization of the periodic variations affecting the apparent frequency of the Galileo clocks, obtained by applying time-frequency analysis and other signal processing techniques on space clock data provided by the European Space Agency. In particular, we analyze one year of data from three Galileo Passive Hydrogen Masers, flying on two different orbital planes. Time-frequency analysis reveals how the spectral components of the apparent frequency change with time. For example, it confirms that the amplitude of the periodic signal due to the orbital estimation errors depends on the angle between the sun and the orbital plane. Moreover, it allows to find a more precise estimate of the amplitude of the J2 effect, in agreement with the prediction of the general theory of relativity, and it shows that such amplitude suddenly decreases when the corresponding relativistic correction is applied to the data, thus validating the analytical formula used for the correction

    Robustness tests for an optical time scale

    Get PDF
    Optical clocks have reached such an impressive accuracy and stability that the future redefinition of the second will be probably based on an optical transition. Consequently, building time scales based on optical clocks has become a key problem. Unfortunately, optical clocks are still laboratory prototypes and are not yet capable of long times of autonomous operation. It is hence critical to understand the impact of this limited optical clock availability on the generated time scale. In this work, after describing a simple and effective optical time scale algorithm, based on the steering of a flywheel oscillator towards the optical clock, we investigate in detail the impact of the limited availability of the optical clock on the performances of the steering algorithm and of the generated time scale through numerical simulations. In particular, we simulate a time scale generated by a hydrogen maser (with a flicker floor of 5.5 × 10−16) steered towards an optical clock, by considering six different scenarios for the availability of the latter, spanning from the ideal one, i.e. continuous operation of the optical clock, to the worst one, i.e. non-uniformly distributed frequency measurements with long unavailability periods. The results prove that the steering algorithm is robust and effective despite its very simple implementation, and it is capable of very good performances in all the considered scenarios, provided that the hydrogen maser behaves nominally. Specifically, they show that a time scale with an accuracy of a few hundreds of picoseconds can be easily realized in the ideal scenario, whereas in a more realistic scenario, with one measurement per week only, the time accuracy is nonetheless of a few nanoseconds, competing with the best time scales currently realized worldwide. The performances degradation due to a non-nominal maser behaviour is also discussed

    Incremental Redundancy Hybrid ARQ Schemes Based on Low-Density Parity-Check Codes

    Full text link

    Emulating opportunistic networks with KauNet Triggers

    Get PDF
    In opportunistic networks the availability of an end-to-end path is no longer required. Instead opportunistic networks may take advantage of temporary connectivity opportunities. Opportunistic networks present a demanding environment for network emulation as the traditional emulation setup, where application/transport endpoints only send and receive packets from the network following a black box approach, is no longer applicable. Opportunistic networking protocols and applications additionally need to react to the dynamics of the underlying network beyond what is conveyed through the exchange of packets. In order to support IP-level emulation evaluations of applications and protocols that react to lower layer events, we have proposed the use of emulation triggers. Emulation triggers can emulate arbitrary cross-layer feedback and can be synchronized with other emulation effects. After introducing the design and implementation of triggers in the KauNet emulator, we describe the integration of triggers with the DTN2 reference implementation and illustrate how the functionality can be used to emulate a classical DTN data-mule scenario

    Partial rupture of the quadriceps muscle in a child

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The quadriceps femoris muscle ruptures usually occur in the middle-aged population. We present a 4-year-old patient with partial rupture of the quadriceps femoris muscle. To our knowledge, this is the youngest patient reported with a quadriceps femoris muscle rupture.</p> <p>Case Presentation</p> <p>A 4-year-old girl admitted to our clinic with left knee pain and limitation in knee movements. Her father reported that she felt pain while jumping on sofa. There was no direct trauma to thigh or knee. We located a palpable soft tissue swelling at distal anterolateral side of thigh. The history revealed that 10 days ago the patient was treated for upper tract respiratory infection with intramuscular Clindamycin for 7 days. When we consulted the patient with her previous doctor and nurse, we learnt that multiple daily injections might be injected to same side of left thigh. MRI showed a partial tear of vastus lateralis muscle matching with the injection sites. The patient treated with long leg half-casting for three weeks. Clinical examination and knee flexion had good results with conservative treatment.</p> <p>Conclusions</p> <p>Multiple intramuscular injections may contribute to damage muscles and make prone to tears with muscle contractions. Doctors and nurses must be cautious to inject from different parts of both thighs.</p

    On the feasibility of a channel-dependent scheduling for the SC-FDMA in 3GPP-LTE (mobile environment) based on a prioritized-bifacet Hungarian method

    Get PDF
    We propose a methodology based on the prioritization and opportunistic reuse of the optimization algorithm known as Hungarian method for the feasible implementation of a channel-dependent scheduler in the long-term evolution uplink (single carrier frequency division multiple access system). This proposal aims to offer a solution to the third generation system’s constraint of allocating only adjacent subcarriers, by providing an optimal resource allotment under a fairness scheme. A multiuser mobile environment following the third generation partnership project TS 45.005v9.3.0/25.943v9.0.0 was also implemented for evaluating the scheduler’s performance. From the results, it was possible to examine the channel frequency response for all users (four user equipments) along the whole bandwidth, to visualize the dynamic resource allocation for each of the 10,000 channel realizations considered, to generate the statistical distribution and cumulative distribution functions of the obtained global costs, as well as to evaluate the system’s performance once the proposed algorithm was embedded. Comparing and emphasizing the benefits of utilizing the proposed dynamic allotment instead of the classic static-scheduling and other existent methods.Peer ReviewedPostprint (published version

    Interference management for moving networks in ultra-dense urban scenarios

    Get PDF
    The number of users relying on broadband wireless connectivity while riding public transportation vehicles is increasing significantly. One of the promising solutions is to deploy moving base stations on public transportation vehicles to form moving networks (MNs) that serve these vehicular users inside the vehicles. In this study, we investigated the benefits and challenges in deploying MNs in ultra-dense urban scenarios. We identified that the key challenge limiting the performance of MNs in ultra-dense urban scenarios is inter-cell interference, which is exacerbated by the urban canyon effects. To address this challenge, we evaluated different inter-cell interference coordination and multi-antenna interference suppression techniques for MNs. We showed that in using MNs together with effective interference management approaches, the quality of service for users in vehicles can be significantly improved, with negligible impacts on the performance of regular outdoor users

    The ac stark shift and space-borne rubidium atomic clocks

    Get PDF
    open7sìDue to its small size, low weight, and low power consumption, the Rb atomic frequency standard (RAFS) is routinely the first choice for atomic timekeeping in space. Consequently, though the device has very good frequency stability (rivaling passive hydrogen masers), there is interest in uncovering the fundamental processes limiting its long-term performance, with the goal of improving the device for future space systems and missions. The ac Stark shift (i. e., light shift) is one of the more likely processes limiting the RAFS' long-term timekeeping ability, yet its manifestation in the RAFS remains poorly understood. In part, this comes from the fact that light-shift induced frequency fluctuations must be quantified in terms of the RAFS' light-shift coefficient and the output variations in the RAFS' rf-discharge lamp, which is a nonlinear inductively-couple plasma (ICP). Here, we analyze the light-shift effect for a family of 10 on-orbit Block-IIR GPS RAFS, examining decade-long records of their on-orbit frequency and rf-discharge lamp fluctuations. We find that the ICP's light intensity variations can take several forms: deterministic aging, jumps, ramps, and non-stationary noise, each of which affects the RAFS' frequency via the light shift. Correlating these light intensity changes with RAFS frequency changes, we estimate the light-shift coefficient, K-LS, for the family of RAFS: K-LS = -(1.9 +/- 0.3) x 10(-12) /%. The 16% family-wide variation in K-LS indicates that while each RAFS may have its own individual K-LS, the variance of K-LS among similarly designed RAFS can be relatively small. Combining K-LS with our estimate of the ICP light intensity's non-stationary noise, we find evidence that random-walk frequency noise in high-quality space-borne RAFS is strongly influenced by the RAFS' rf-discharge lamp via the light shift effect. Published by AIP Publishing.openFormichella, V.; Camparo, J.; Sesia, I.; Signorile, G.; Galleani, L.; Huang, M.; Tavella, P.Formichella, V.; Camparo, J.; Sesia, Ilaria; Signorile, Giovanna; Galleani, L.; Huang, M.; Tavella, Patrizi
    corecore