128 research outputs found

    Contrasting patterns of climatic niche divergence in Trebouxia—A alade of lichen-forming algae.

    Get PDF
    Lichen associations are overwhelmingly supported by carbon produced by photosynthetic algal symbionts. These algae have diversified to occupy nearly all climates and continents; however, we have a limited understanding of how their climatic niches have evolved through time. Here we extend previous work and ask whether phylogenetic signal in, and the evolution of, climatic niche, varies across climatic variables, phylogenetic scales, and among algal lineages in Trebouxia—the most common genus of lichen-forming algae. Our analyses reveal heterogeneous levels of phylogenetic signal across variables, and that contrasting models of evolution underlie the evolution of climatic niche divergence. Together these analyses demonstrate the variable processes responsible for shaping climatic tolerance in Trebouxia, and provide a framework within which to better understand potential responses to climate change associated perturbations. Such predictions reveal a disturbing trend in which the pace at which modern climate change is proceeding will vastly exceed the rate at which Trebouxia climatic niches have previously evolved

    Photobiont diversity in lichen symbioses from extreme environments

    Get PDF
    Fungal–algal relationships—both across evolutionary and ecological scales—are finely modulated by the presence of the symbionts in the environments and by the degree of selectivity and specificity that either symbiont develop reciprocally. In lichens, the green algal genus Trebouxia Puymaly is one of the most frequently recovered chlorobionts. Trebouxia species-level lineages have been recognized on the basis of their morphological and phylogenetic diversity, while their ecological preferences and distribution are still only partially unknown. We selected two cosmopolitan species complexes of lichen-forming fungi as reference models, i.e., Rhizoplaca melanophthalma and Tephromela atra, to investigate the diversity of their associated Trebouxia spp. in montane habitats across their distributional range worldwide. The greatest diversity of Trebouxia species-level lineages was recovered in the altitudinal range 1,000–2,500 m a.s.l. A total of 10 distinct Trebouxia species-level lineages were found to associate with either mycobiont, for which new photobionts are reported. One previously unrecognized Trebouxia species-level lineage was identified and is here provisionally named Trebouxia “A52.” Analyses of cell morphology and ultrastructure were performed on axenically isolated strains to fully characterize the new Trebouxia “A52” and three other previously recognized lineages, i.e., Trebouxia “A02,” T. vagua “A04,” and T. vagua “A10,” which were successfully isolated in culture during this study. The species-level diversity of Trebouxia associating with the two lichen-forming fungi in extreme habitats helps elucidate the evolutionary pathways that this lichen photobiont genus traversed to occupy varied climatic and vegetative regimes

    Transoceanic Dispersal and Subsequent Diversification on Separate Continents Shaped Diversity of the Xanthoparmelia pulla Group (Ascomycota)

    Get PDF
    In traditional morphology-based concepts many species of lichenized fungi have world-wide distributions. Molecular data have revolutionized the species delimitation in lichens and have demonstrated that we underestimated the diversity of these organisms. The aim of this study is to explore the phylogeography and the evolutionary patterns of the Xanthoparmelia pulla group, a widespread group of one of largest genera of macrolichens. We used a dated phylogeny based on nuITS and nuLSU rDNA sequences and performed an ancestral range reconstruction to understand the processes and explain their current distribution, dating the divergence of the major lineages in the group. An inferred age of radiation of parmelioid lichens and the age of a Parmelia fossil were used as the calibration points for the phylogeny. The results show that many species of the X. pulla group as currently delimited are polyphyletic and five major lineages correlate with their geographical distribution and the biosynthetic pathways of secondary metabolites. South Africa is the area where the X. pulla group radiated during the Miocene times, and currently is the region with the highest genetic, morphological and chemical diversity. From this center of radiation the different lineages migrated by long-distance dispersal to others areas, where secondary radiations developed. The ancestral range reconstruction also detected that a secondary lineage migrated from Australia to South America via long-distance dispersal and subsequent continental radiation

    "Sleep disparity" in the population: poor sleep quality is strongly associated with poverty and ethnicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the social determinants of sleep attainment. This study examines the relationship of race/ethnicity, socio-economic status (SES) and other factors upon sleep quality.</p> <p>Methods</p> <p>A cross-sectional survey of 9,714 randomly selected subjects was used to explore sleep quality obtained by self-report, in relation to socioeconomic factors including poverty, employment status, and education level. The primary outcome was poor sleep quality. Data were collected by the Philadelphia Health Management Corporation.</p> <p>Results</p> <p>Significant differences were observed in the outcome for race/ethnicity (African-American and Latino versus White: unadjusted OR = 1.59, 95% CI 1.24-2.05 and OR = 1.65, 95% CI 1.37-1.98, respectively) and income (below poverty threshold, unadjusted OR = 2.84, 95%CI 2.41-3.35). In multivariable modeling, health indicators significantly influenced sleep quality most prominently in poor individuals. After adjusting for socioeconomic factors (education, employment) and health indicators, the association of income and poor sleep quality diminished, but still persisted in poor Whites while it was no longer significant in poor African-Americans (adjusted OR = 1.95, 95% CI 1.47-2.58 versus OR = 1.16, 95% CI 0.87-1.54, respectively). Post-college education (adjusted OR = 0.47, 95% CI 0.31-0.71) protected against poor sleep.</p> <p>Conclusions</p> <p>A "sleep disparity" exists in the study population: poor sleep quality is strongly associated with poverty and race. Factors such as employment, education and health status, amongst others, significantly mediated this effect only in poor subjects, suggesting a differential vulnerability to these factors in poor relative to non-poor individuals in the context of sleep quality. Consideration of this could help optimize targeted interventions in certain groups and subsequently reduce the adverse societal effects of poor sleep.</p

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Get PDF
    River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.peerReviewe

    Stable oxygen isotopes in Romanian oak tree rings record summer droughts and associated large-scale circulation patterns over Europe

    Get PDF
    We present the first annual oxygen isotope record (1900 – 2016) from the latewood (LW) cellulose of oak trees (Quercus robur) from NW Romania. As expected, the results correlate negatively with summer relative humidity, sunshine duration and precipitation and positively with summer maximum temperature. Spatial correlation analysis reveals a clear signal reflecting drought conditions at a European scale. Interannual variability is influenced by large-scale atmospheric circulation and by surface temperatures in the North Atlantic Ocean and the Mediterranean Sea. There is considerable potential to produce long and well-replicated oak tree ring stable isotope chronologies in Romania which would allow reconstructions of both regional drought and large-scale circulation variability over southern and central Europe
    • 

    corecore