1,615 research outputs found
Constraining the period of the ringed secondary companion to the young star J1407 with photographic plates
Context. The 16 Myr old star 1SWASP J140747.93-394542.6 (V1400 Cen) underwent
a series of complex eclipses in May 2007, interpreted as the transit of a giant
Hill sphere filling debris ring system around a secondary companion, J1407b. No
other eclipses have since been detected, although other measurements have
constrained but not uniquely determined the orbital period of J1407b. Finding
another eclipse towards J1407 will help determine the orbital period of the
system, the geometry of the proposed ring system and enable planning of further
observations to characterize the material within these putative rings. Aims. We
carry out a search for other eclipses in photometric data of J1407 with the aim
of constraining the orbital period of J1407b. Methods. We present photometry
from archival photographic plates from the Harvard DASCH survey, and Bamberg
and Sonneberg Observatories, in order to place additional constraints on the
orbital period of J1407b by searching for other dimming and eclipse events.
Using a visual inspection of all 387 plates and a period-folding algorithm we
performed a search for other eclipses in these data sets. Results. We find no
other deep eclipses in the data spanning from 1890 to 1990, nor in recent
time-series photometry from 2012-2018. Conclusions. We rule out a large
fraction of putative orbital periods for J1407b from 5 to 20 years. These
limits are still marginally consistent with a large Hill sphere filling ring
system surrounding a brown dwarf companion in a bound elliptical orbit about
J1407. Issues with the stability of any rings combined with the lack of
detection of another eclipse, suggests that J1407b may not be bound to J1407.Comment: 8 pages, 3 tables, 4 figures, accepted for publication in A&A. LaTeX
files of the paper, scripts for the figures, and a minimal working FPA can be
found under https://github.com/robinmentel/Constraining-Period
Brane World Susy Breaking from String/M Theory
String and M-theory realizations of brane world supersymmetry breaking
scenarios are considered in which visible sector Standard Model fields are
confined on a brane, with hidden sector supersymmetry breaking isolated on a
distant brane. In calculable examples with an internal manifold of any volume
the Kahler potential generically contains brane--brane non-derivative contact
interactions coupling the visible and hidden sectors and is not of the no-scale
sequestered form. This leads to non-universal scalar masses and without
additional assumptions about flavor symmetries may in general induce dangerous
sflavor violation even though the Standard Model and supersymmetry branes are
physically separated. Deviations from the sequestered form are dictated by bulk
supersymmetry and can in most cases be understood as arising from exchange of
bulk supergravity fields between branes or warping of the internal geometry.
Unacceptable visible sector tree-level tachyons arise in many models but may be
avoided in certain classes of compactifications. Anomaly mediated and gaugino
mediated contributions to scalar masses are sub-dominant except in special
circumstances such as a flat or AdS pure five--dimensional bulk geometry
without bulk vector multiplets.Comment: Latex, 83 pages, references adde
Recommended from our members
Near-Earth asteroid sample return missions
The rate of discovery of new NEAs and the success of D-S 1 and NEAR-Shoemaker, suggest that sample return from NEAs is now technically feasible. Here we present a summary of a recent workshop on the topic
Travelling solitons in the parametrically driven nonlinear Schroedinger equation
We show that the parametrically driven nonlinear Schroedinger equation has
wide classes of travelling soliton solutions, some of which are stable. For
small driving strengths nonpropogating and moving solitons co-exist while
strongly forced solitons can only be stably when moving sufficiently fast.Comment: The paper is available as the JINR preprint E17-2000-147(Dubna,
Russia) and the preprint of the Max-Planck Institute for the Complex Systems
mpipks/0009011, Dresden, Germany. It was submitted to Physical Review
A Review of Recent Developments in Atomic Processes for Divertors and Edge Plasmas
The most promising concepts for power and particle control in tokamaks and
other fusion experiments rely upon atomic processes to transfer the power and
momentum from the edge plasma to the plasma chamber walls. This places a new
emphasis on processes at low temperatures (1-200 eV) and high densities
(10^20-10^22 m^-3). The most important atomic processes are impurity and
hydrogen radiation, ionization, excitation, recombination, charge exchange,
radiation transport, molecular collisions, and elastic scattering of atoms,
molecules and ions. Important new developments have occurred in each of these
areas. The best available data for these processes and an assessment of their
role in plasma wall interactions are summarized, and the major areas where
improved data are needed are reviewed.Comment: Preprint for the 11th PSI meeting, postscript with 22 figures, 40
page
Corporate financing decisions: UK survey evidence
Despite theoretical developments in recent years, our understanding of corporate capital structure remains incomplete. Prior empirical research has been dominated by archival regression studies which are limited in their ability to fully reflect the diversity found in practice. The present paper reports on a comprehensive survey of corporate financing decision-making in UK listed companies. A key finding is that firms are heterogeneous in their capital structure policies. About half of the firms seek to maintain a target debt level, consistent with trade-off theory, but 60 per cent claim to follow a financing hierarchy, consistent with pecking order theory. These two theories are not viewed by respondents as either mutually exclusive or exhaustive. Many of the theoretical determinants of debt levels are widely accepted by respondents, in particular the importance of interest tax shield, financial distress, agency costs and also, at least implicitly, information asymmetry. Results also indicate that cross-country institutional differences have a significant impact on financial decisions
From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification
The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost
The effect of finite-range interactions in classical transport theory
The effect of scattering with non-zero impact parameters between consituents
in relativistic heavy ion collisions is investigated. In solving the
relativistic Boltzmann equation, the characteristic range of the collision
kernel is varied from approximately one fm to zero while leaving the mean-free
path unchanged. Modifying this range is shown to significantly affect spectra
and flow observables. The finite range is shown to provide effective
viscosities, shear, bulk viscosity and heat conductivity, with the viscous
coefficients being proportional to the square of the interaction range
Genetics of human neural tube defects
Neural tube defects (NTDs) are common, severe congenital malformations whose causation involves multiple genes and environmental factors. Although more than 200 genes are known to cause NTDs in mice, there has been rather limited progress in delineating the molecular basis underlying most human NTDs. Numerous genetic studies have been carried out to investigate candidate genes in cohorts of patients, with particular reference to those that participate in folate one-carbon metabolism. Although the homocysteine remethylation gene MTHFR has emerged as a risk factor in some human populations, few other consistent findings have resulted from this approach. Similarly, attention focused on the human homologues of mouse NTD genes has contributed only limited positive findings to date, although an emerging association between genes of the non-canonical Wnt (planar cell polarity) pathway and NTDs provides candidates for future studies. Priorities for the next phase of this research include: (i) larger studies that are sufficiently powered to detect significant associations with relatively minor risk factors; (ii) analysis of multiple candidate genes in groups of well-genotyped individuals to detect possible gene–gene interactions; (iii) use of high throughput genomic technology to evaluate the role of copy number variants and to detect ‘private’ and regulatory mutations, neither of which have been studied to date; (iv) detailed analysis of patient samples stratified by phenotype to enable, for example, hypothesis-driven testing of candidates genes in groups of NTDs with specific defects of folate metabolism, or in groups of fetuses with well-defined phenotypes such as craniorachischisis
Scaffold Translation: Barriers Between Concept and Clinic
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90495/1/ten-2Eteb-2E2011-2E0251.pd
- …
