228 research outputs found

    The Rule of Rescue in the Era of Precision Medicine, HLA Eplet Matching, and Organ Allocation

    Get PDF
    Precision medicine can put clinicians in a position where they must act more as resource allocators than their traditional role as patient advocates. In the allocation of transplantable organs and tissues, the use of eplet matching will enhance precision medicine but, in doing so, generate a tension with the present reliance on rule of rescue and justice-based factors for allocations. Matching donor and recipient human leukocyte antigens (HLA) is shown to benefit virtually all types of solid organ transplants yet, until recently, HLA-matching has not been practical and was shown to contribute to ethnic/racial disparities in organ allocation. Recent advances using eplets from the HLA molecule has renewed the promise of such matching for predicting patient outcomes. The rule of rescue in organ allocation reflects a combination of ethical, policy, and legal imperatives. However, the rule of rescue can impede the allocation strategies adopted by professional medical associations and the optimal use of scarce transplant resources. While eplet-matching seeks to improve outcomes, it may potentially frustrate current ethics-motivated initiatives, established patient-practitioner relationships, and functional conventions in the allocation of medical resources such as organ and tissue transplants. Eplet-matching allocation schemes need to be carefully and collaboratively designed with clear, fair and equitable guidelines that complement functional conventions and maintain public trust

    A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation

    Get PDF
    The establishment of nitrogen-fixing root nodules in legume-rhizobia symbiosis requires an intricate communication between the host plant and its symbiont. We are, however, limited in our understanding of the symbiosis signaling process. In particular, how membrane-localized receptors of legumes activate signal transduction following perception of rhizobial signaling molecules has mostly remained elusive. To address this, we performed a coimmunoprecipitation-based proteomics screen to identify proteins associated with Nod factor receptor 5 (NFR5) in Lotus japonicus. Out of 51 NFR5-associated proteins, we focused on a receptor-like cytoplasmic kinase (RLCK), which we named NFR5-interacting cytoplasmic kinase 4 (NiCK4). NiCK4 associates with heterologously expressed NFR5 in Nicotiana benthamiana, and directly binds and phosphorylates the cytoplasmic domains of NFR5 and NFR1 in vitro. At the cellular level, Nick4 is coexpressed with Nfr5 in root hairs and nodule cells, and the NiCK4 protein relocates to the nucleus in an NFR5/NFR1-dependent manner upon Nod factor treatment. Phenotyping of retrotransposon insertion mutants revealed that NiCK4 promotes nodule organogenesis. Together, these results suggest that the identified RLCK, NiCK4, acts as a component of the Nod factor signaling pathway downstream of NFR5

    The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype

    Get PDF
    types: JOURNAL ARTICLEMutation specific effects in monogenic disorders are rare. We describe atypical Fanconi syndrome caused by a specific heterozygous mutation in HNF4A. Heterozygous HNF4A mutations cause a beta cell phenotype of neonatal hyperinsulinism with macrosomia and young onset diabetes. Autosomal dominant idiopathic Fanconi syndrome (a renal proximal tubulopathy) is described but no genetic cause has been defined.This article presents independent research supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The research is funded by a Wellcome Trust Senior Investigator Award, (grant number 098395/Z/12/Z).Wellcome Trus

    Recognition of COVID-19 with occupational origin: a comparison between European countries

    Get PDF
    Objectives This study aims to present an overview of the formal recognition of COVID-19 as occupational disease (OD) or injury (OI) across Europe. Methods A COVID-19 questionnaire was designed by a task group within COST-funded OMEGA-NET and sent to occupational health experts of 37 countries in WHO European region, with a last update in April 2022. Results The questionnaire was filled out by experts from 35 countries. There are large differences between national systems regarding the recognition of OD and OI: 40% of countries have a list system, 57% a mixed system and one country an open system. In most countries, COVID-19 can be recognised as an OD (57%). In four countries, COVID-19 can be recognised as OI (11%) and in seven countries as either OD or OI (20%). In two countries, there is no recognition possible to date. Thirty-two countries (91%) recognise COVID-19 as OD/OI among healthcare workers. Working in certain jobs is considered proof of occupational exposure in 25 countries, contact with a colleague with confirmed infection in 19 countries, and contact with clients with confirmed infection in 21 countries. In most countries (57%), a positive PCR test is considered proof of disease. The three most common compensation benefits for COVID-19 as OI/OD are disability pension, treatment and rehabilitation. Long COVID is included in 26 countries. Conclusions COVID-19 can be recognised as OD or OI in 94% of the European countries completing this survey, across different social security and embedded occupational health systems.This publication is based on work from COST Action CA16216 (OMEGA-NET), supported by COST (European Cooperation in Science and Technology)

    Genome Structure of the Legume, Lotus japonicus

    Get PDF
    The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes

    The apoptosis-inducing activity towards leukemia and lymphoma cells in a cyanobacterial culture collection is not associated with mouse bioassay toxicity

    Get PDF
    Cyanobacteria (83 strains and seven natural populations) were screened for content of apoptosis (cell death)-inducing activity towards neoplastic cells of the immune (jurkat acute T-cell lymphoma) and hematopoetic (acute myelogenic leukemia) lineage. Apoptogenic activity was frequent, even in strains cultured for decades, and was unrelated to whether the cyanobacteria had been collected from polar, temperate, or tropic environments. The activity was more abundant in the genera Anabaena and Microcystis compared to Nostoc, Phormidium, Planktothrix, and Pseudanabaena. Whereas the T-cell lymphoma apoptogens were frequent in organic extracts, the cell death-inducing activity towards leukemia cells resided mainly in aqueous extracts. The cyanobacteria were from a culture collection established for public health purposes to detect toxic cyanobacterial blooms, and 54 of them were tested for toxicity by the mouse bioassay. We found no correlation between the apoptogenic activity in the cyanobacterial isolates with their content of microcystin, nor with their ability to elicit a positive standard mouse bioassay. Several strains produced more than one apoptogen, differing in biophysical or biological activity. In fact, two strains contained microcystin in addition to one apoptogen specific for the AML cells, and one apoptogen specific for the T-cell lymphoma. This study shows the potential of cyanobacterial culture collections as libraries for bioactive compounds, since strains kept in cultures for decades produced apoptogens unrelated to the mouse bioassay detectable bloom-associated toxins
    corecore