17 research outputs found

    Adding new evidence to the attribution puzzle of the recent water shortage over São Paulo (Brazil)

    Get PDF
    São Paulo, Brazil has experienced severe water shortages and record low levels of its water reservoirs in 2013–2014. We evaluate the contributions of Amazon deforestation and climate change to low precipitation levels using a modelling approach, and address whether similar precipitation anomalies might occur more frequently in a warming world. Precipitation records from INMET show that the dry anomaly extended over a fairly large region to the north of São Paulo. Unique features of this event were anomalous sea surface temperature (SST) patterns in the Southern Atlantic, an extension of the sub tropical high into the São Paulo region and moisture flux divergence over São Paulo. The SST anomalies were very similar in 2013/14 and 2014/15, suggesting they played a major role in forcing the dry conditions. The SST anomalies consisted of three zonal bands: a cold band in the tropics, a warm band to the south of São Paulo and another cold band poleward of 40 S. We performed ensemble climate simulations with observed SSTs prescribed, vegetation cover either fixed at 1870 levels or varying over time, and greenhouse gases (GHGs) either fixed at pre-industrial levels (280 ppm CO₂) or varying over time. These simulations exhibit similar precipitation deficits over the São Paulo region in 2013/14. From this, we infer that SST patterns and the associated large-scale state of the atmosphere were important factors in determining the precipitation anomalies, while deforestation and increased GHGs only weakly modulated the signal. Finally, analyses of future climate simulations from CMIP5 models indicate that the frequency of such precipitation anomalies is not likely to change in a warmer climate

    Reportagem com o professor Sergio Salles Filho

    No full text
    Nao informado

    A framework for resource recovery from wastewater treatment plants in megacities of developing countries

    Get PDF
    In developing countries, there is often a lack of a comprehensive data set that supports the development of coherent policies on resource recovery from wastewater treatment. This paper aims to contribute to the elaboration of resource recovery projects by providing accurate and updated data from wastewater treatment plants such as those located in the region of the Macrometropolis of Sao Paulo. The authors discuss possibilities of improvement of resource recovery for this illustrative example. Comprehensive analyses were performed based on data from 143 municipal wastewater treatment plants to understand the situation regarding resource recovery implementation in this region. The results show that just 26% of the plants perform at least one resource recovery practice. The predominant resource recovery practice is internal water reuse, and recovery is concentrated more in large plants than in medium and small ones. The sludge is disposed in landfills except for three plants, which perform sludge recycling for compost. Some plant managers reported interest in recovering energy from biogas, in expanding water reuse and in recovering sludge for fertilizer production or for building materials. Several aspects that have been regarded as relevant to the implementation of resource recovery processes in previous literature are discussed, such as the size of the plant, related legislation as well as treatment technologies and configurations. Finally, the authors propose a generic framework with several steps that can help to achieve resource recovery implementation. Therefore, the results can provide support for planning of resource recovery projects for large cities in developing countries. [Abstract copyright: Copyright © 2020 Elsevier Inc. All rights reserved.

    Impact of copper sulfate application at an urban Brazilian reservoir: A geostatistical and ecotoxicological approach

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Ministerio de Economía y CompetitividadProcesso FAPESP: 12/16420-6Ministerio de Economía y Competitividad: IJCI-2015-23644A landscape ecotoxicology approach was used to assess the spatial distribution of copper in the recent bottom sediment (surficial sediment) of a Brazilian subtropical reservoir (the Guarapiranga reservoir) and its potential ecotoxicological impacts on the reservoir ecosystem and the local society. We discuss the policies and procedures that have been employed for the management of this reservoir over the past four decades. Spatial heterogeneity in the reservoir was evaluated by means of sampling design and statistical analysis based on kriging spatial interpolation. The sediment copper concentrations have been converted into qualitative categories in order to interpret the reservoir quality and the impacts of management policies. This conversion followed the Canadian Water Framework Directive (WFD) ecotoxicological concentration levels approach, employing sediment quality guidelines (SQGs). The SQG values were applied as the copper concentration thresholds for quantitative-qualitative conversion of data for the surficial sediment of the Guarapiranga. The SQGs used were as follows: a) interim sediment quality guideline (ISQG), b) probable effect level (PEL), and c) regional reference value (RRV). The quantitative results showed that the spatial distribution of copper in the recent bottom sediment reflected the reservoir's management policy and the copper application protocol, and that the copper concentrations varied considerably, ranging from virtually-zero to in excess of 3 gcopper/kgds. The qualitative results demonstrated that the recent bottom sediment was predominantly in a bad or very bad condition, and could therefore have impacts on the local society and the ecosystem. It could be concluded that the management policy for this reservoir was mainly determined by the desire to minimize short-term costs, disregarding long-term socioeconomic and environmental consequences
    corecore