770 research outputs found

    Increased L‐[1– 11 C] Leucine Uptake in the Leptomeningeal Angioma of Sturge‐Weber Syndrome: A PET Study

    Full text link
    BACKGROUND AND PURPOSE We used L‐[1– 11 C]leucine (LEU) positron emission tomography (PET) to measure amino acid uptake in children with Sturge‐Weber syndrome (SWS), and to relate amino acid uptake measures with glucose metabolism. METHODS LEU and 2‐deoxy‐2[ 18 F]fluoro‐D‐glucose (FDG) PET were performed in 7 children (age: 5 months‐13 years) with unilateral SWS. Asymmetries of LEU uptake in the posterior brain region, underlying the angioma and in frontal cortex, were measured and correlated with glucose hypometabolism. Kinetic analysis of LEU uptake was performed in 4 patients. RESULTS Increased LEU standard uptake value (SUV, mean: 15.1%) was found in the angioma region in 6 patients, and smaller increases in LEU SUV (11.5%) were seen in frontal cortex in 4 of the 6 patients, despite normal glucose metabolism in frontal regions. High LEU SUV was due to both increased tracer transport (3/4 patients) and high protein synthesis rates (2/4). FDG SUV asymmetries in the angioma region were inversely related to LEU SUV asymmetries ( r =–.83, P = .042). CONCLUSIONS Increased amino acid uptake in the angioma region and also in less affected frontal regions may provide a marker of pathological mechanisms contributing to chronic brain damage in children with SWS. J Neuroimaging 2012;22:177‐183.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91095/1/j.1552-6569.2010.00565.x.pd

    Recent advances in radiotherapy

    Get PDF
    Radiation therapy has come a long way from treatment planning based on orthogonal radiographs with large margins around tumours. Advances in imaging and radiation planning software have led to three-dimensional conformal radiotherapy and, further, to intensity modulated radiotherapy (IMRT). IMRT permits sparing of normal tissues and hence dose-escalation to tumours. IMRT is the current standard in treatment of head and prostate cancer and is being investigated in other tumour sites. Exquisitely sculpted dose distributions (increased geographical miss) with IMRT, plus tumour motion and anatomical changes during radiotherapy make image guided radiotherapy an essential part of modern radiation delivery. Various hardware and software tools are under investigation for optimal IGRT

    Presence of RD149 Deletions in M. tuberculosis Central Asian Strain1 Isolates Affect Growth and TNFα Induction in THP-1 Monocytes

    Get PDF
    Central Asian Strain 1 (CAS1) is the prevalent Mycobacterium tuberculosis genogroup in South Asia. CAS1 strains carry deletions in RD149 and RD152 regions. Significance of these deletions is as yet unknown. We compared CAS1 strains with RD149 and concurrent RD149-RD152 deletions with CAS1 strains without deletions and with the laboratory reference strain, M. tuberculosis H37Rv for growth and for induction of TNFα, IL6, CCL2 and IL10 in THP-1 cells. Growth of CAS1 strains with deletions was slower in broth (RD149; p = 0.024 and RD149-RD152; p = 0.025) than that of strains without deletions. CAS1 strains with RD149 deletion strains further showed reduced intracellular growth (p = 0.013) in THP-1 cells as compared with strains without deletions, and also as compared with H37Rv (p = 0.007) and with CAS1 RD149-RD152 deletion strains (p = 0.029). All CAS1 strains induced higher levels of TNFα and IL10 secretion in THP-1 cells than H37Rv. Additionally, CAS1 strains with RD149 deletions induced more TNFα secretion than those without deletions (p = 0.013). CAS1 RD149 deletion strains from extrapulmonary sources showed more rapid growth and induced lower levels of TNFα and IL6 secretion in THP-1 cells than isolates from pulmonary sources. This data suggests that presence of RD149 reduces growth and increases the induction of TNFα in host cells by CAS1 strains. Differences observed for extrapulmonary strains may indicate an adaptation which increases potential for dissemination and tropism outside the lung. Overall, we hypothesise that RD149 deletions generate genetic diversity within strains and impact interactions of CAS1 strains with host cells with important clinical consequences

    A model of human lung fibrogenesis for the assessment of anti-fibrotic strategies in idiopathic pulmonary fibrosis.

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with limited therapeutic options. KCa3.1 ion channels play a critical role in TGFÎČ1-dependent pro-fibrotic responses in human lung myofibroblasts. We aimed to develop a human lung parenchymal model of fibrogenesis and test the efficacy of the selective KCa3.1 blocker senicapoc. 2 mm3 pieces of human lung parenchyma were cultured for 7 days in DMEM ± TGFÎČ1 (10 ng/ml) and pro-fibrotic pathways examined by RT-PCR, immunohistochemistry and collagen secretion. Following 7 days of culture with TGFÎČ1, 41 IPF- and fibrosis-associated genes were significantly upregulated. Immunohistochemical staining demonstrated increased expression of ECM proteins and fibroblast-specific protein after TGFÎČ1-stimulation. Collagen secretion was significantly increased following TGFÎČ1-stimulation. These pro-fibrotic responses were attenuated by senicapoc, but not by dexamethasone. This 7 day ex vivo model of human lung fibrogenesis recapitulates pro-fibrotic events evident in IPF and is sensitive to KCa3.1 channel inhibition. By maintaining the complex cell-cell and cell-matrix interactions of human tissue, and removing cross-species heterogeneity, this model may better predict drug efficacy in clinical trials and accelerate drug development in IPF. KCa3.1 channels are a promising target for the treatment of IPF.This work was supported by The Dunhill Medical Trust, project grant R270/1112, the MRC, project grant MR/K018213/1, and The British Lung Foundation, grant PPRG15-8. The work was also supported in part by the National Institute for Health Research Leicester Respiratory Biomedical Research Unit

    RNA expression of TLR10 in normal equine tissues

    Get PDF
    Background: Toll like receptors are one of the major innate immune system pathogen recognition systems. There is little data on the expression of the TLR10 member of this family in the horse. Results: This paper describes the genetic structure of the Equine TLR10 gene and its RNA expression in a range of horse tissues. It describes the phylogenetic analysis of the Equine TLR1,6,10,2 annotations in the horse genome, firmly identifying them in their corresponding gene clades compared to other species and firmly placing the horse gene with other TLR10 genes from odd-toed ungulates. Additional 3’ transcript extensions to that annotated for TLR10 in the horse genome have been identified by analysis of RNAseq data. RNA expression of the equine TLR10 gene was highest in peripheral blood mononucleocytes and lymphoid tissue (lymph nodes and spleen), however some expression was detected in all tissues tested (jejunum, caudal mesenteric lymph nodes, bronchial lymph node, spleen, lung, colon, kidney and liver). Additional data on RNAseq expression of all equine TLR genes (1–4 and 6–10) demonstrate higher expression of TLR4 than other equine TLRs in all tissues. Conclusion: The equine TLR10 gene displays significant homology to other mammalian TLR10 genes and could be reasonably assumed to have similar fuctions. Its RNA level expression is higher in resting state PBMCs in horses than in other tissues

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
    • 

    corecore