22 research outputs found

    Relic Neutrino Absorption Spectroscopy

    Full text link
    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10^{21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m_{nu} >~ 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.Comment: 19 pages, 26 figures, REVTeX

    Fatigue Crack Growth Mechanisms At the Microstructure Scale in Al-Si-Mg Cast Alloys: Mechanisms in Regions II and III

    Get PDF
    The fatigue crack growth behavior in Regions 11 and III of crack growth was investigated for hypoeutectic and eutectic Al-Si-Mg cast alloys. To isolate and establish the mechanistic contributions of characteristic microstructural features (dendritic α-Al matrix, eutectic phases, Mg-Si strengthening precipitates), alloys with various Si content/morphology, grain size level, and matrix strength were studied; the effect of secondary dendrite arm spacing (SDAS) was also assessed. In Regions 11 and III of crack growth, the observed changes in the fracture surface appearance were associated with changes in crack growth mechanisms at the microstructural scale (from a linear advance predominantly through primary α-Al to a tortuous advance exclusively through AI-Si eutectic Regions). The extent of the plastic zone ahead of the crack tip was successfully used to explain the changes in growth mechanisms. The fatigue crack growth tests were conducted on compact tension specimens under constant stress ratio, R = 0.1, in ambient conditions

    An improved method for measuring muon energy using the truncated mean of dE/dx

    Full text link
    The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    Full text link
    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0{\deg} and 46{\deg}. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles {\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on composition assumption. Spectral indices above the knee range from -3.08 to -3.11 depending on primary mass composition assumption. Moreover, an indication of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure

    Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies

    Get PDF
    Contains fulltext : 167331.pdf (publisher's version ) (Open Access)Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application

    Etidronate for Prevention of Ectopic Mineralization in Patients With Pseudoxanthoma Elasticum

    No full text
    BACKGROUND In pseudoxanthoma elasticum (PXE), low pyrophosphate levels may cause ectopic mineralization, leading to skin changes, visual impairment, and peripheral arterial disease. OBJECTIVES The authors hypothesized that etidronate, a pyrophosphate analog, might reduce ectopic mineralization in PXE. METHODS In the Treatment of Ectopic Mineralization in Pseudoxanthoma Elasticum trial, adults with PXE and leg arterial calcifications (n = 74) were randomly assigned to etidronate or placebo (cyclical 20 mg/kg for 2 weeks every 12 weeks). The primary outcome was ectopic mineralization, quantified with (18)fluoride positron emission tomography scans as femoral arterial wall target-to-background ratios (TBRfemoral). Secondary outcomes were computed tomography arterial calcification and ophthalmological changes. Safety outcomes were bone density, serum calcium, and phosphate. RESULTS During 12 months of follow-up, the TBRfemoral increased 6% (interquartile range [IQR]: -12% to 25%) in the etidronate group and 7% (IQR: -9% to 32%) in the placebo group (p = 0.465). Arterial calcification decreased 4% (IQR: -11% to 7%) in the etidronate group and increased 8% (IQR: -1% to 20%) in the placebo group (p = 0.001). Etidronate treatment was associated with significantly fewer subretinal neovascularization events (1 vs. 9, p = 0.007). Bone density decreased 4% -12% in the etidronate group and 6% -9% in the placebo group (p = 0.374). Hypocalcemia (1.5 mmol/l) and recovered spontaneously. CONCLUSIONS In patients with PXE, etidronate reduced arterial calcification and subretinal neovascularization events but did not lower femoral 18fluoride sodium positron emission tomography activity compared with placebo, without important safety issues. (Treatment of Ectopic Mineralization in Pseudoxanthoma elasticum; NTR5180) (c) 2018 by the American College of Cardiology Foundation

    Recent Advances in Molecular Breeding of Forage Crops For Improved Drought and Salt Stress Tolerance

    No full text
    corecore