271 research outputs found

    A life-of-mine approach to fauna monitoring is critical for recovering functional ecosystems to restored landscapes

    Get PDF
    First published: 06 September 2021Mineral extraction activities are intensely disruptive to ecosystems and their associated fauna. Few countries globally have comprehensive legislation surrounding mine site restoration, but within Australia, restoration of discontinued mine sites is a legislative requirement. However, substantial ambiguity regarding the optimal techniques for restoring biodiverse and functional fauna assemblages remains, and monitoring activities typically focus on vegetation communities despite functioning ecosystems being reliant on key trophic interactions involving fauna. When fauna are considered, monitoring efforts typically yield baseline surveys of species richness and the presence or absence of conservation-significant taxa. Even where complete ecosystem recovery is not the goal of post-mining ecological recovery, we argue that there is a critical need for a life-of-mine approach to fauna monitoring underpinned by greater dialog between researchers, environmental regulators, and the mining industry. Environmental Impact Assessments should include requirements for the consideration of all potential impacts of mining on the structure, behavior, and ecological roles of fauna communities, restoration practices must facilitate the return of functional, resilient, and biodiverse fauna communities to restored post-mining landscapes, and the scope of monitoring practices should be broadened to a holistic examination of fauna communities. Recognizing, quantifying, and monitoring the impacts of mining activities and subsequent rehabilitation or restoration on fauna is vital to understanding how anthropogenic disturbances affect natural ecosystems, and in assisting in the successful recovery of ecosystem functionality to areas that have been damaged, degraded, or destroyed.Sophie L. Cross, Holly S. Bradley, Emily P. Tudor, Michael D. Craig, Sean Tomlinson, Michael J. Bamford, Philip W. Bateman, Adam T. Cros

    SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture

    Get PDF
    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell populations that had been selected for TRAIL-resistance from initially TRAIL-sensitive populations. SAHA may increase TRAIL sensitivity in insensitive cells, but not in cells that have specifically been selected for acquired TRAIL-resistance. [Abstract copyright: Copyright © 2017 Elsevier Inc. All rights reserved.

    Understanding and responding to COVID-19 in Wales: protocol for a privacy-protecting data platform for enhanced epidemiology and evaluation of interventions

    Get PDF
    INTRODUCTION: The emergence of the novel respiratory SARS-CoV-2 and subsequent COVID-19 pandemic have required rapid assimilation of population-level data to understand and control the spread of infection in the general and vulnerable populations. Rapid analyses are needed to inform policy development and target interventions to at-risk groups to prevent serious health outcomes. We aim to provide an accessible research platform to determine demographic, socioeconomic and clinical risk factors for infection, morbidity and mortality of COVID-19, to measure the impact of COVID-19 on healthcare utilisation and long-term health, and to enable the evaluation of natural experiments of policy interventions. METHODS AND ANALYSIS: Two privacy-protecting population-level cohorts have been created and derived from multisourced demographic and healthcare data. The C20 cohort consists of 3.2 million people in Wales on the 1 January 2020 with follow-up until 31 May 2020. The complete cohort dataset will be updated monthly with some individual datasets available daily. The C16 cohort consists of 3 million people in Wales on the 1 January 2016 with follow-up to 31 December 2019. C16 is designed as a counterfactual cohort to provide contextual comparative population data on disease, health service utilisation and mortality. Study outcomes will: (a) characterise the epidemiology of COVID-19, (b) assess socioeconomic and demographic influences on infection and outcomes, (c) measure the impact of COVID-19 on short -term and longer-term population outcomes and (d) undertake studies on the transmission and spatial spread of infection. ETHICS AND DISSEMINATION: The Secure Anonymised Information Linkage-independent Information Governance Review Panel has approved this study. The study findings will be presented to policy groups, public meetings, national and international conferences, and published in peer-reviewed journals

    PHIP - a novel candidate breast cancer susceptibility locus on 6q14.1

    Get PDF
    Most non-BRCA1/2 breast cancer families have no identified genetic cause. We used linkage and haplotype analyses in familial and sporadic breast cancer cases to identify a susceptibility locus on chromosome 6q. Two independent genome-wide linkage analysis studies suggested a 3 Mb locus on chromosome 6q and two unrelated Swedish families with a LOD > 2 together seemed to share a haplotype in 6q14.1. We hypothesized that this region harbored a rare high-risk founder allele contributing to breast cancer in these two families. Sequencing of DNA and RNA from the two families did not detect any pathogenic mutations. Finally, 29 SNPs in the region were analyzed in 44,214 cases and 43,532 controls from BCAC, and the original haplotypes in the two families were suggested as low-risk alleles for European and Swedish women specifically. There was also some support for one additional independent moderate-risk allele in Swedish familial samples. The results were consistent with our previous findings in familial breast cancer and supported a breast cancer susceptibility locus at 6q14.1 around the PHIP gene.Peer reviewe

    Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1

    Get PDF
    Peer reviewe

    Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry.

    Get PDF
    Purpose: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. Methods: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. Results: The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at p < 0.001), rs9939609 (FTO) (OR 0.94, 95 % CI = 0.92–0.95, p = 4.13E−13), rs7903146 (TCF7L2) (OR 1.04, 95 % CI = 1.02–1.06, p = 1.26E−05), and rs8042680 (PRC1) (OR 0.97, 95 % CI = 0.95–0.99, p = 8.05E−04). Conclusions: We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk
    corecore