38 research outputs found

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe

    On the Maximum Cardinality Search Lower Bound for Treewidth

    No full text
    The Maximum Cardinality Search algorithm visits the vertices of a graph in some order, such that at each step, an unvisited vertex that has the largest number of visited neighbors becomes visited. An MCS-ordering of a graph is an ordering of the vertices that can be generated by the Maximum Cardinality Search algorithm. The visited degree of a vertex v in an MCS-ordering is the number of neighbors of v that are before v in the ordering. The visited degree of an MCS-ordering ψ of G is the maximum visited degree over all vertices v in ψ. The maximum visited degree over all MCS-orderings of graph G is called its maximum visited degree. Lucena [14] showed that the treewidth of a graph G is at least its maximum visited degree. We show that the maximum visited degree is of size O(log n) for planar graphs, and give examples of planar graphs G with maximum visited degree k with O(k!) vertices, for all k ∈ N. Given a graph G, it is NP-complete to determine if its maximum visited degree is at least k, for any fixed k ≥ 7. Also, this problem does not have a polynomial time approximation algorithm with constant ratio, unless P=NP. Variants of the problem are also shown to be NP-complete. We also propose and experimentally analysed some heuristics for the problem. Several tiebreakers for the MCS algorithm are proposed and evaluated. We also give heuristics that give upper bounds on the value of the maximum visited degree of a graph, which appear to give results close to optimal on many graphs from real life applications

    New Upper Bound Heuristics for Treewidth

    No full text
    In this paper, we introduce and evaluate some heuristics to find an upper bound on the treewidth of a given graph. Each of the heuristics selects the vertices of the graph one by one, building an elimination list. The heuristics differ in the criteria used for selecting vertices. These criteria depend on the fill-in of a vertex and the related new notion of the fill-in-excluding-one-neighbor. In several cases, the new heuristics improve the bounds obtained by existing heuristics

    Contraction and Treewidth Lower Bounds

    No full text
    Edge contraction is shown to be a useful mechanism to improve lower bound heuristics for treewidth. A successful lower bound for treewidth is the degeneracy: the maximum over all subgraphs of the minimum degree. The degeneracy is polynomial time computable. We introduce the notion of contraction degeneracy: the maximum over all graphs that can be obtained by contracting edges of the minimum degree. We show that the problem to compute the contraction degeneracy is NP-hard, but for fixed k, it is polynomial time decidable if a given graph G has contraction degeneracy at least k. Heuristics for computing the contraction degeneracy are proposed and experimentally evaluated. It is shown that these can lead to considerable improvements to the lower bound for treewidth. A similar study is made for the combination of contraction with Lucena’s lower bound based on Maximum Cardinality Search [12]
    corecore