978 research outputs found

    First assessment of Mercury (Hg) concentrations in skin and Carapace of Flatback Turtles (Natator depressus) (Garman) from Western Australia

    Get PDF
    Mercury pollution in the surface ocean has more than doubled over the past century. Within oceanic food webs, sea turtles have life history characteristics that make them especially vulnerable to mercury (Hg) accumulation. In this study we investigated Hg concentrations in the skin and carapace of nesting flatback turtles (Natator depressus) from two rookeries in Western Australia. A total of 50 skin samples and 52 carapace samples were collected from nesting turtles at Thevenard Island, and 23 skin and 28 carapace samples from nesting turtles at Eighty Mile Beach. We tested the influence of turtle size on Hg concentrations, hypothesising that larger and likely older adult turtles would exhibit higher concentrations due to more prolonged exposure to Hg. We compared the rookeries, hypothesising that the turtles from the southern rookery (Thevenard Island) were more likely to forage and reside in the Pilbara region closer to industrial mining activity and loading ports (potential exposure to higher environmental Hg concentrations) with turtles from the northern rookery (Eighty Mile Beach) more likely to reside and feed in the remote Kimberley. Turtles from the Eighty Mile Beach rookery had significantly higher skin Hg concentrations (x̄ = 19.4 ± 4.8 ng/g) than turtles from Thevenard Island (x̄ = 15.2 ± 5.8 ng/g). There was no significant difference in carapace Hg concentrations in turtles between Eighty Mile Beach (x̄ = 48.4 ± 21.8 ng/g) and Thevenard Island (x̄ = 41.3 ± 16.5 ng/g). Turtle size did not explain Hg concentrations in skin samples from Eighty Mile Beach and Thevenard Island, but turtle size explained 43.1% of Hg concentrations in the carapace of turtles from Eighty Mile Beach and 44.2% from Thevenard Island. Mercury concentrations in the flatback turtles sampled in this study are relatively low compared to other sea turtles worldwide, likely a result of the generally low concentrations of Hg in the Australian environment. Although we predicted that mining activities would influence flatback turtle Hg bioaccumulations, our data did not support this effect. This may be a result of foraging ground overlap between the two rookeries, or the predominant wind direction carrying atmospheric Hg inland rather than seaward. This is the first Hg study in skin and carapace of flatback turtles and represents a baseline to compare Hg contamination in Australia’s surrounding oceans

    Predicting trace metal solubility and fractionation in urban soils from isotopic exchangeability

    Get PDF
    Metal-salt amended soils (MA, n = 23), and historically-contaminated urban soils from two English cities (Urban, n = 50), were investigated to assess the effects of soil properties and contaminant source on metal lability and solubility. A stable isotope dilution method, with and without a resin purification step, was used to measure the lability of Cd, Cu, Ni, Pb and Zn. For all five metals in MA soils, lability (%E-values) could be reasonably well predicted from soil pH value with a simple logistic equation. However, there was evidence of continuing time-dependent fixation of Cd and Zn in the MA soils, following more than a decade of storage under air-dried conditions, mainly in high pH soils. All five metals in MA soils remained much more labile than in Urban soils, strongly indicating an effect of contaminant source on metal lability in the latter. Metal solubility was predicted for both sets of soil by the geochemical speciation model WHAM-VII, using E-values as an input variable. For soils with low metal solution concentrations, over-estimation of Cd, Ni and Zn solubility was associated with binding to the Fe oxide fraction while accurate prediction of Cu solubility was dependent on humic acid content. Lead solubility was most poorly described, especially in the Urban soils. Generally, slightly poorer estimation of metal solubility was observed in Urban soils, possibly due to a greater incidence of high pH values. The use of isotopically exchangeable metal to predict solubility is appropriate both for historically contaminated soils and where amendment with soluble forms of metal is used, as in toxicological trials. However, the major limitation to predicting solubility may lie with the accuracy of model input variables such as humic acid and Fe oxide contents where there is often a reliance on relatively crude analytical estimations of these variables

    Iodine soil dynamics and methods of measurement: a review

    Get PDF
    Iodine is an essential micronutrient for human health: insufficient intake can have multiple effects on development and growth, affecting approximately 1.9 billion people worldwide. Previous reviews have focussed on iodine analysis in environmental and biological samples, however, no such review exists for the determination of iodine fractionation and speciation in soils. This article reviews the geodynamics of both stable 127I and the long-lived isotope 129I (t1/2 ¼ 15.7 million years), alongside the analytical methods for determining iodine concentrations in soils, including consideration of sample preparation. The ability to measure total iodine concentration in soils has developed significantly from rudimentary spectrophotometric analysis methods to inductively coupled plasma mass spectrometry (ICP-MS). Analysis with ICP-MS has been reported as the best method for determining iodine concentrations in a range of environmental samples and soils due to developments in extraction procedures and sensitivity, with extremely good detection limits typically <mg L_1. The ability of ICP-MS to measure iodine and its capabilities to couple on-line separation tools has the significance to develop the understanding of iodine geodynamics. In addition, nuclear-related analysis and recent synchrotron light source analysis are discussed

    Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils

    Get PDF
    Chemical extractants used to measure labile soil metal must ideally select for and solubilise the labile fraction, with minimal solubilisation of non-labile metal. We assessed four extractants (0.43 M HNO3, 0.43 M CH3COOH, 0.05 M Na2H2EDTA and 1 M CaCl2) against these requirements. For soils contaminated by contrasting sources, we compared isotopically exchangeable Ni, Cu, Zn, Cd and Pb (EValue, mg kg-1), with the concentrations of metal solubilised by the chemical extractants (MExt, mg kg-1). Crucially, we also determined isotopically exchangeable metal in the soil–extractant systems (EExt, mg kg-1). Thus ‘EExt - EValue’ quantifies the concentration of mobilised non-labile metal, while ‘EExt - MExt’ represents adsorbed labile metal in the presence of the extractant. Extraction with CaCl2 consistently underestimated EValue for Ni, Cu, Zn and Pb, while providing a reasonable estimate of EValue for Cd. In contrast, extraction with HNO3 both consistently mobilised non-labile metal and overestimated the EValue. Extraction with CH3COOH appeared to provide a good estimate of EValue for Cd; however, this was the net outcome of incomplete solubilisation of labile metal, and concurrent mobilisation of non-labile metal by the extractant (MExt EValue). The Na2H2EDTA extractant mobilised some non-labile metal in three of the four soils, but consistently solubilised the entire labile fraction for all soil-metal combinations (MExt ≈ EExt). Comparison of EValue, MExt and EExt provides a rigorous means of assessing the underlying action of soil chemical extraction methods and could be used to refine long-standing soil extraction methodologies

    Chiral Analysis of Quenched Baryon Masses

    Get PDF
    We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and the delta in lattice simulations of full QCD. Even after including the meson-loop self-energies which give rise to the leading and next-to-leading non-analytic behaviour (and hence the most rapid variation in the region of light quark mass), we find surprisingly little curvature in the quenched case. Replacing these meson-loop self-energies by the corresponding terms in full QCD yields a remarkable level of agreement with the results of the full QCD simulations. This comparison leads to a very good understanding of the origins of the mass splitting between these baryons.Comment: 23 pages, 6 figure

    Atenolol versus losartan in children and young adults with Marfan's syndrome

    Get PDF
    BACKGROUND : Aortic-root dissection is the leading cause of death in Marfan's syndrome. Studies suggest that with regard to slowing aortic-root enlargement, losartan may be more effective than beta-blockers, the current standard therapy in most centers. METHODS : We conducted a randomized trial comparing losartan with atenolol in children and young adults with Marfan's syndrome. The primary outcome was the rate of aortic-root enlargement, expressed as the change in the maximum aortic-root-diameter z score indexed to body-surface area (hereafter, aortic-root z score) over a 3-year period. Secondary outcomes included the rate of change in the absolute diameter of the aortic root; the rate of change in aortic regurgitation; the time to aortic dissection, aortic-root surgery, or death; somatic growth; and the incidence of adverse events. RESULTS : From January 2007 through February 2011, a total of 21 clinical centers enrolled 608 participants, 6 months to 25 years of age (mean [+/- SD] age, 11.5 +/- 6.5 years in the atenolol group and 11.0 +/- 6.2 years in the losartan group), who had an aorticroot z score greater than 3.0. The baseline-adjusted rate of change (+/- SE) in the aortic-root z score did not differ significantly between the atenolol group and the losartan group (-0.139 +/- 0.013 and -0.107 +/- 0.013 standard-deviation units per year, respectively; P = 0.08). Both slopes were significantly less than zero, indicating a decrease in the degree of aortic-root dilatation relative to body-surface area with either treatment. The 3-year rates of aortic-root surgery, aortic dissection, death, and a composite of these events did not differ significantly between the two treatment groups. CONCLUSIONS : Among children and young adults with Marfan's syndrome who were randomly assigned to losartan or atenolol, we found no significant difference in the rate of aorticroot dilatation between the two treatment groups over a 3-year period

    Kinetics of uranium(VI) lability and solubility in aerobic soils

    Get PDF
    Uranium may pose a hazard to ecosystems and human health due to its chemotoxic and radiotoxic properties. The long half-life of many U isotopes and their ability to migrate raise concerns over disposal of radioactive wastes. This work examines the long-term U bioavailability in aerobic soils following direct deposition or transport to the surface and addresses two questions: (i) to what extent do soil properties control the kinetics of U speciation changes in soils and (ii) over what experimental timescales must U reaction kinetics be measured to reliably predict long-term of impact in the terrestrial environment? Soil microcosms spiked with soluble uranyl were incubated for 1.7 years. Changes in UVI fractionation were periodically monitored by soil extractions and isotopic dilution techniques, shedding light on the binding strength of uranyl onto the solid phase. Uranyl sorption was rapid and strongly buffered by soil Fe oxides, but UVI remained reversibly held and geochemically reactive. The pool of uranyl species able to replenish the soil solution through several equilibrium reactions is substantially larger than might be anticipated from typical chemical extractions and remarkably similar across different soils despite contrasting soil properties. Modelled kinetic parameters indicate that labile UVI declines very slowly, suggesting that the processes and transformations transferring uranyl to an intractable sink progress at a slow rate regardless of soil characteristics. This is of relevance in the context of radioecological assessments, given that soil solution is the key reservoir for plant uptake

    Efficacy of a topically administered combination of emodepside and praziquantel against mature and immature Ancylostoma tubaeforme in domestic cats

    Get PDF
    This paper reports the efficacy of emodepside/praziquantel spot¿on (Profender®, Bayer AG, Leverkusen, Germany), a novel broadspectrum anthelmintic for dermal application, against L4 larvae and immature adult and adult stages of Ancylostoma tubaeforme in cats. The formulation contains 2.14% (w/w) emodepside and 8.58% (w/v) praziquantel, with emodepside being active against gastrointestinal nematodes and praziquantel against cestodes. Five randomized, blinded and controlled laboratory studies demonstrated 100% efficacy of emodepside/praziquantel spot¿on against mature A. tubaeforme and an efficacy of >95% and >97%, respectively, against L4 larvae and immature adults (based on worm counts after necropsy) at approximately the minimum proposed dose rate in cats of 3.0 mg emodepside and 12.0 mg praziquantel/kg body weight. No adverse reactions to the treatment were observed. It is concluded that emodepside/praziquantel spot¿on is an effective and safe treatment against infections with mature and immature A. tubaeforme. Emodepside/praziquantel spot¿on will considerably facilitate the treatment of cats against nematodes and cestodes compared with orally administered preparation

    Agronomic biofortification of leafy vegetables grown in an Oxisol, Alfisol and Vertisol with isotopically labelled selenium (77Se)

    Get PDF
    Selenium biofortification of crops is a proven technology for improving dietary nutrition. This study used isotopically labelled selenate (>99% enriched 77Se) to assess uptake and Se availability to two green vegetables, Brassica napus L (B. napus) and Amaranthus retroflexus L (A. retroflexus) grown in three contrasting Malawi soils: a Vertisol (calcareous), Alfisol (moderately acidic) and Oxisol (acidic). Plants were grown under glasshouse conditions (4 replicates; 6 kg soil per pot) following application of 77Se-enriched selenate at rates equivalent to 0, 10 and 20 g ha−1. Leaves were harvested at fortnightly intervals and the plants were then allowed to re-grow, to simulate cultivation practice. Leaf samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) for selenium isotopes (77Se and 78Se). The isotopic data were processed to quantify the contribution to plant Se concentration from the fertilizer and the soil. Both concentration and uptake of the fertilizer 77Se declined sharply with sequential harvests due to progressive fixation of 77Se in the soil rather than exhaustion (by uptake) of the Se applied. Initially the bioavailability of fertilizer Se was three orders of magnitude greater than the soil Se but this declined to the same order of magnitude by the end of the trial. Application of 77Se had no effect on uptake of soil-derived Se. There were marked differences between the three soils studied. The relative bio-availability of the fertilizer Se followed the sequence (Vertisol > Alfisol > Oxisol) but the two crops showed the same trend in decline of fertilizer Se uptake. Thus, fixation of selenium in the soils studied was sufficiently rapid that Se biofortification of green vegetables subject to several harvests would require multiple applications during the growing season

    Spatial prediction of the concentration of selenium (Se) in grain across part of Amhara Region, Ethiopia

    Get PDF
    Grain and soil were sampled across a large part of Amhara, Ethiopia in a study motivated by prior evidence of selenium (Se) deficiency in the Region's population. The grain samples (teff, Eragrostis tef, and wheat, Triticum aestivum) were analysed for concentration of Se and the soils were analysed for various properties, including Se concentration measured in different extractants. Predictive models for concentration of Se in the respective grains were developed, and the predicted values, along with observed concentrations in the two grains were represented by a multivariate linear mixed model in which selected covariates, derived from remote sensor observations and a digital elevation model, were included as fixed effects. In all modelling steps the selection of predictors was done using false discovery rate control, to avoid over-fitting, and using an α-investment procedure to maximize the statistical power to detect significant relationships by ordering the tests in a sequence based on scientific understanding of the underlying processes likely to control Se concentration in grain. Cross-validation indicated that uncertainties in the empirical best linear unbiased predictions of the Se concentration in both grains were well-characterized by the prediction error variances obtained from the model. The predictions were displayed as maps, and their uncertainty was characterized by computing the probability that the true concentration of Se in grain would be such that a standard serving would not provide the recommended daily allowance of Se. The spatial variation of grain Se was substantial, concentrations in wheat and teff differed but showed the same broad spatial pattern. Such information could be used to target effective interventions to address Se deficiency, and the general procedure used for mapping could be applied to other micronutrients and crops in similar settings
    • …
    corecore