38 research outputs found

    Особенности тканевых реакций в теноновой капсуле при прогрессирующей миопии

    Get PDF
    Background: Research actuality is determined by the first, the prevalence of refraction errors including progressive myopia among children secondly, high risk and tends to develop complications from the visual organ in refractive disorders.Aims: To investigate tissue reactions occurring in the Tenon’s capsule with anomalies of refraction, including with progressive myopia.Materials and methods: A one-step study of the Tenon’s capsule of 47 samples (25 with hyperopia and 22 with progressive myopia) was carried out. The material of the Tenon’s capsule was obtained during surgical treatment of strabismus and sclera strengthening operations with progressive myopia. The Tenon’s capsule was studied at different levels: tissue, cellular, subcellular. Fragments of Tenon’s capsule were stained with hematoxylin-eosin and picrofuchsin mixture by the method of van Gieson at the tissue level. This allowed obtaining a general picture of the morphology of Tenon’s capsule. Fragments of Tenon’s capsule were stained by toluidine blue in tetraborate sodium at the cellular level. This gave the opportunity to define the scope for ultratome and spend morphometry of cellular composition. A fragment of Tenon’s capsule was studied by transmission electron microscopy (TEM) at the subcellular level and was performed ultrastructural morphometry of fibroblasts, evaluation of the density of the collagen fibers.Results: Were evaluated by qualitative and quantitative characteristics of the structure of Tenon’s capsule with two anomalies of refractions: progressive myopia and hyperopia: with progressive myopia in Tenon’s capsule, in contrast to hyperopia, the following number of fibroblasts (1.56±0.12 per 104 µm2), mast cells (0.08±0.02 per 104 µm2), adipocytes (0.01±0.001 per 104 µm2) were observed; ultrastructural features of fibroblasts were represented by such quantitative characteristics: the area of the fibroblast nucleus was 1.60±0.82 in µm2, the length of the karyolemma was 6.99±0.189 µm, the number of nucleoli was 0.17±0.015 per 1 µm2, the number of mitochondria and lysosome -2.05±0.14 per 1 µm2; 0.64±0.08 per 1 µm2, respectively); the density of collagen fiber was 28.72±4.18%, fibrillar fibrillation and fragmentation were recorded.Conclusions: Hyperplasia of fibroblasts and their ultrastructures, mast cells, reduction in the level of adipocytes and the density of collagen fibrils ― these changes are features of the tissue reaction in the tenon capsule and reflect the adaptive nature of the processes occurring during progressive myopia. Обоснование. Актуальность исследования определяется высокой распространенностью аномалий рефракции, в том числе прогрессирующей миопии, среди детей, а также высоким риском и склонностью к развитию осложнений со стороны органа зрения при патологиях рефракции.Цель ― исследовать тканевые реакции, протекающие в теноновой капсуле при аномалиях рефракции, в том числе при прогрессирующей миопии.Методы. Проводилось одномоментное исследование 47 образцов теноновой капсулы (25 при гиперметропии и 22 при прогрессирующей миопии), полученных во время оперативного лечения косоглазия и склероукрепляющих операций при прогрессирующей миопии. Тенонова капсула была изучена на различных уровнях ― тканевом, клеточном, субклеточном. На тканевом уровне фрагменты теноновой капсулы окрашивали гематоксилином-эозином и пикрофуксиновой смесью по методике Ван-Гизона, что позволило получить общее представление о морфологии теноновой капсулы; на клеточном уровне ― толуидиновым синим на тетраборате натрия, что дало возможность определить область для ультратомии и провести морфометрию клеточного состава; на субклеточном уровне при помощи трансмиссионной электронной микроскопии проводили ультраструктурную морфометрию фибробластов, оценку плотности коллагеновых волокон.Результаты. Оценивали качественные и количественные характеристики строения теноновой капсулы при двух аномалиях рефракции ― прогрессирующей миопии и гиперметропии. Обнаружено, что при прогрессирующей миопии в теноновой капсуле, в отличие от гиперметропии, наблюдается 1,56±0,12 на 104 мкм2 фибробластов, 0,08±0,02 на 104 мкм2 тучных клеток, 0,01±0,001 на 104 мкм2 адипоцитов, а ультраструктурные особенности фибробластов представлены следующими количественными характеристиками: площадь ядра фибробласта ― 1,60±0,82 в мкм2, протяженность кариолеммы ― 6,99±0,199 мкм, количество ядрышек ― 0,17±0,015 на 1 мкм2 ядра, количество митохондрий и лизосом ― 2,05±0,14 и 0,64±0,08 на 1 мкм2 соответственно); плотность коллагенового волокна составила 28,72±4,18%; регистрировались фибриллярное разволокнение и фрагментация.Заключение. Гиперплазия фибробластов и их ультраструктур, а также тучных клеток, снижение уровня адипоцитов и плотности коллагеновых фибрилл ― данные изменения являются особенностями тканевых реакций в теноновой капсуле и отражают адаптационный характер процессов, протекающих при прогрессирующей миопии

    Non-contact registration of respiration by analysis of IR-THz human face images

    Get PDF
    В работе предложен новый подход к бесконтактной регистрации функции дыхания на основе анализа инфракрасно-терагерцовых изображений лица человека, последовательность которых позволяет визуализировать процессы, происходящие во время дыхания. Для получения количественных оценок функции дыхания предложено два способа. Первый – с использованием зонда, реализующего функцию пространственного дифференцирования, обеспечивает высокую чувствительность, но требует повышенной точности совмещения зонда с носовым отверстием и масштабирования в соответствии с ракурсом съемки. Второй – гистограммный способ получения количественных оценок функции внешнего дыхания – инвариантен к масштабу, не требует точного позиционирования, но при этом обладает меньшей чувствительностью. Предложенные способы позволили дистанционно оценить частоту дыхания, которая коррелирует с данными, полученными контактным методом регистрации функции дыхания. We propose a new approach to non-contact recording of respiratory function based on the analysis of a sequence of Infrared-terahertz images of the human face, allowing the processes that occur during breathing to be visualized. To obtain quantitative estimates of the respiratory function, two methods are proposed. The first one utilizes a probe which implements the function of spatial differentiation and provides high sensitivity, but requires an increased accuracy of positioning the probe at the nasal opening and scaling in accordance with the camera angle. The other one is a histogram method for obtaining quantitative estimates of the external respiratory function, which is scale invariant and does not require precise positioning, but has a lower sensitivity compared to the first one. The methods proposed have made it possible to remotely evaluate the respiratory rate, which correlates well with the data obtained by a contact method of respiratory function registration.Исследование выполнено при частичной поддержке РФФИ (грант № 17-29-02487) и частичной поддержке Министерства науки и высшего образования (проект №0748-2020-0012) в рамках выполнения работ по Государственному заданию ФНИЦ «Кристаллография и фотоника» РАН с использованием оборудования, приобретенного за счет средств «Программы развития Московского государственного университета имени М.В. Ломоносова до 2020 года», при поддержке Междисциплинарной научно-образовательной школы Московского университета «Фотонные и квантовые технологии. Цифровая медицина»

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS hadron calorimeter with cosmic ray muons and LHC beam data

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance study of the CMS barrel resistive plate chambers with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPIn October and November 2008, the CMS collaboration conducted a programme of cosmic ray data taking, which has recorded about 270 million events. The Resistive Plate Chamber system, which is part of the CMS muon detection system, was successfully operated in the full barrel. More than 98% of the channels were operational during the exercise with typical detection efficiency of 90%. In this paper, the performance of the detector during these dedicated runs is reported.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore