102 research outputs found

    EO-ALERT: A Novel Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Civil Alerts

    Get PDF
    The EO-ALERT project proposes the definition and development of the next-generation Earth Observation (EO) data processing chain, based on a novel flight segment architecture that moves opti-mised key EO data processing elements from the ground segment to on-board the satellite, with the aim of delivering EO products to the end user with very low latency. EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, and below 1 minute in some scenarios. The proposed archi-tecture combines innovations in the on-board elements of the data chain and the communications, namely: on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Artificial Intelligence (AI), on-board AI-based data compression and encryption, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. This paper pre-sents the proposed architecture, its performance and hardware, considering two different user scenarios: ship detection and extreme weather nowcasting. The results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to ground with latency below five minutes, for both SAR and Optical missions, demonstrating the viability of the EO-ALERT concept

    Frontiers in Non-invasive Cardiac Mapping: Rotors in Atrial Fibrillation-Body Surface Frequency-Phase Mapping

    Full text link
    [EN] Experimental and clinical data demonstrate that atrial fibrillation (AF) maintenance in animals and groups of patients depends on localized reentrant sources localized primarily to the pulmonary veins (PVs) and the left atrium(LA) posterior wall in paroxysmal AF but elsewhere, including the right atrium (RA), in persistent AF. Moreover, AF can be eliminated by directly ablating AFdriving sources or “rotors,” that exhibit high-frequency, periodic activity. The RADAR-AF randomized trial demonstrated that an ablation procedure based on a more target-specific strategy aimed at eliminating high frequency sites responsible for AF maintenance is as efficacious as and safer than empirically isolating all the PVs. In contrast to the standard ECG, global atrial noninvasive frequency analysis allows non-invasive identification of high-frequency sources before the arrival at the electrophysiology laboratory for ablation. Body surface potential map (BSPM) replicates the endocardial distribution of DFs with localization of the highest DF (HDF) and can identify small areas containing the high-frequency sources. Overall, BSPM had a sensitivity of 75% and specificity of 100% for capturing intracardiac EGMs as having LARA DF gradient. However, raw BSPM data analysis of AF patterns of activity showed incomplete and instable reentrant patterns of activation. Thus, we developed an analysis approach whereby a narrow band-pass filtering allowed selecting the electrical activity projected on the torso at the HDF, which stabilized the projection of rotors that potentially drive AF on the surface. Consequently, driving reentrant patterns (“rotors”) with spatiotemporal stability during >70% of the AF time could be observed noninvasibly after HDFfiltering. Moreover, computer simulations found that the combination of BSPM phase mapping with DF analysis enabled the discrimination of true rotational patterns even during the most complex AF. Altogether, these studies show that the combination of DF analysis with phase maps of HDF-filtered surface ECG recordings allows noninvasive localization of atrial reentries during AF and further a physiologically-based rationale for personalized diagnosis and treatment of patients with AF.Study supported in part by the Spanish Society of Cardiology (Becas Investigacio´ n Clı´nica 2009); the Universitat Polite` cnica de Vale`ncia through its research initiative program; the Generalitat Valenciana Grants (ACIF/2013/021); the Ministerio de Economia y Competividad, Red RIC; the Centro Nacional de Investigaciones Cardiovasculares (proyecto CNIC-13); the Coulter Foundation from the Biomedical Engineering Department (University of Michigan); the Gelman Award from the Cardiovascular Division (University of Michigan); the National Heart, Lung, and Blood Institute grants (P01-HL039707, P01-HL087226 and R01-HL118304), and the Leducq FoundationAtienza, F.; Climent, A.; Guillem Sánchez, MS.; Berenfeld, O. (2015). Frontiers in Non-invasive Cardiac Mapping: Rotors in Atrial Fibrillation-Body Surface Frequency-Phase Mapping. Cardiac Electrophysiology Clinics. 7(1):59-69. https://doi.org/10.1016/j.ccep.2014.11.002S59697

    A Novel Satellite Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Alerts

    Get PDF
    The EO-ALERT European Commission H2020 project proposes the definition, development, and verification and validation through ground hardware testing, of a next-generation Earth Observation (EO) data processing chain. The proposed data processing chain is based on a novel flight segment architecture that moves EO data processing elements traditionally executed in the ground segment to on-board the satellite, with the aim of delivering EO products to the end user with very low latency. EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, and below one minute in realistic scenarios. The proposed EO-ALERT architecture is enabled by on-board processing, recent improvements in processing hardware using Commercial Off-The-Shelf (COTS) components, and persistent space-to-ground communications links. EO-ALERT combines innovations in the on-board elements of the data chain and the communications, namely: on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Machine Learning (ML) and Artificial Intelligence (AI), on-board AI-based data compression and encryption, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. This paper presents the proposed architecture, its hardware realization for the ground testing in a representative environment and its performance. The architecture’s performance is evaluated considering two different user scenarios where very low latency (almost-real-time) EO product delivery is required: ship detection and extreme weather monitoring/nowcasting. The hardware testing results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to the end user with a latency below five minutes, for both SAR and Optical missions, demonstrating the viability of the EO-ALERT architecture. In particular, in several test scenarios, for both the TerraSAR-X SAR and DEIMOS-2 Optical Very High Resolution (VHR) missions, hardware testing of the proposed architecture has shown it can deliver EO products and alerts to the end user globally, with latency lower than one-point-five minutes

    Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study

    Get PDF
    Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength - electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely

    Effect of Global Cardiac Ischemia on Human Ventricular Fibrillation: Insights from a Multi-scale Mechanistic Model of the Human Heart

    Get PDF
    Acute regional ischemia in the heart can lead to cardiac arrhythmias such as ventricular fibrillation (VF), which in turn compromise cardiac output and result in secondary global cardiac ischemia. The secondary ischemia may influence the underlying arrhythmia mechanism. A recent clinical study documents the effect of global cardiac ischaemia on the mechanisms of VF. During 150 seconds of global ischemia the dominant frequency of activation decreased, while after reperfusion it increased rapidly. At the same time the complexity of epicardial excitation, measured as the number of epicardical phase singularity points, remained approximately constant during ischemia. Here we perform numerical studies based on these clinical data and propose explanations for the observed dynamics of the period and complexity of activation patterns. In particular, we study the effects on ischemia in pseudo-1D and 2D cardiac tissue models as well as in an anatomically accurate model of human heart ventricles. We demonstrate that the fall of dominant frequency in VF during secondary ischemia can be explained by an increase in extracellular potassium, while the increase during reperfusion is consistent with washout of potassium and continued activation of the ATP-dependent potassium channels. We also suggest that memory effects are responsible for the observed complexity dynamics. In addition, we present unpublished clinical results of individual patient recordings and propose a way of estimating extracellular potassium and activation of ATP-dependent potassium channels from these measurements

    Identification of Close Relatives in the HUGO Pan-Asian SNP Database

    Get PDF
    The HUGO Pan-Asian SNP Consortium has recently released a genome-wide dataset, which consists of 1,719 DNA samples collected from 71 Asian populations. For studies of human population genetics such as genetic structure and migration history, this provided the most comprehensive large-scale survey of genetic variation to date in East and Southeast Asia. However, although considered in the analysis, close relatives were not clearly reported in the original paper. Here we performed a systematic analysis of genetic relationships among individuals from the Pan-Asian SNP (PASNP) database and identified 3 pairs of monozygotic twins or duplicate samples, 100 pairs of first-degree and 161 second-degree of relationships. Three standardized subsets with different levels of unrelated individuals were suggested here for future applications of the samples in most types of population-genetics studies (denoted by PASNP1716, PASNP1640 and PASNP1583 respectively) based on the relationships inferred in this study. In addition, we provided gender information for PASNP samples, which were not included in the original dataset, based on analysis of X chromosome data

    Mapping human genetic diversity in Asia

    Get PDF
    Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations

    A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship

    Get PDF
    The most common sustained cardiac arrhythmias in humans are atrial tachyarrhythmias, mainly atrial fibrillation. Areas of complex fractionated atrial electrograms and high dominant frequency have been proposed as critical regions for maintaining atrial fibrillation; however, there is a paucity of data on the relationship between the characteristics of electrograms and the propagation pattern underlying them. In this study, a realistic 3D computer model of the human atria has been developed to investigate this relationship. The model includes a realistic geometry with fiber orientation, anisotropic conductivity and electrophysiological heterogeneity. We simulated different tachyarrhythmic episodes applying both transient and continuous ectopic activity. Electrograms and their dominant frequency and organization index values were calculated over the entire atrial surface. Our simulations show electrograms with simple potentials, with little or no cycle length variations, narrow frequency peaks and high organization index values during stable and regular activity as the observed in atrial flutter, atrial tachycardia (except in areas of conduction block) and in areas closer to ectopic activity during focal atrial fibrillation. By contrast, cycle length variations and polymorphic electrograms with single, double and fragmented potentials were observed in areas of irregular and unstable activity during atrial fibrillation episodes. Our results also show: 1) electrograms with potentials without negative deflection related to spiral or curved wavefronts that pass over the recording point and move away, 2) potentials with a much greater proportion of positive deflection than negative in areas of wave collisions, 3) double potentials related with wave fragmentations or blocking lines and 4) fragmented electrograms associated with pivot points. Our model is the first human atrial model with realistic fiber orientation used to investigate the relationship between different atrial arrhythmic propagation patterns and the electrograms observed at more than 43000 points on the atrial surface.This work was partially supported by the Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica, Ministerio de Ciencia e Innovacion of Spain (TEC2008-02090), by the Plan Avanza (Accion Estrategica de Telecomunicaciones y Sociedad de la Informacion), Ministerio de Industria Turismo y Comercio of Spain (TSI-020100-2010-469), by the Programa Prometeo 2012 of the Generalitat Valenciana and by the Programa de Apoyo a la Investigacion y Desarrollo de la Universitat Politecnica de Valencia (PAID-06-11-2002). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Tobón Zuluaga, C.; Ruiz Villa, CA.; Heidenreich, E.; Romero Pérez, L.; Hornero, F.; Saiz Rodríguez, FJ. (2013). A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship. PLoS ONE. 8(2):1-13. https://doi.org/10.1371/journal.pone.0050883S11382Ho SY, Sanchez-Quintana D, Anderson RH (1998) Can anatomy define electric pathways? In: International Workshop on Computer Simulation and Experimental Assessment of Electrical Cardiac Function, Lausanne, Switzerland. 77–86.Tobón C (2009) Evaluación de factores que provocan fibrilación auricular y de su tratamiento mediante técnicas quirúrgicas. Estudio de simulación. Master Thesis Universitat Politècnica de València.Ruiz C (2010) Estudio de la vulnerabilidad a reentradas a través de modelos matemáticos y simulación de la aurícula humana. Doctoral Thesis Universitat Politècnica de València.Tobón C (2010) Modelización y evaluación de factores que favorecen las arritmias auriculares y su tratamiento mediante técnicas quirúrgicas. Estudio de simulación. Doctoral Thesis Universitat Politècnica de València.Henriquez, C. S., & Papazoglou, A. A. (1996). Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis. Proceedings of the IEEE, 84(3), 334-354. doi:10.1109/5.486738Grimm, R. A., Chandra, S., Klein, A. L., Stewart, W. J., Black, I. W., Kidwell, G. A., & Thomas, J. D. (1996). Characterization of left atrial appendage Doppler flow in atrial fibrillation and flutter by Fourier analysis. American Heart Journal, 132(2), 286-296. doi:10.1016/s0002-8703(96)90424-xMaleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). K+ current changes account for the rate dependence of the action potential in the human atrial myocyte. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1398-H1410. doi:10.1152/ajpheart.00411.200
    corecore