448 research outputs found

    FGGE 4-dimensional data assimilation at ECMWF ( weather forecasts).

    Get PDF
    The 4-dimensional data-assimilation system used to produce the FGGE level III-b data set at the European Centre for Medium Range Weather Forecasts (ECMWF) is described. The system consists of a three-dimensional multivariate optimum interpolation, a nonlinear normal mode initialization, and associated automatic system for data checking. A 15-level model with a horizontal resolution of 1.875o is used for the dynamical assimilation. -from Author

    Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds

    Get PDF
    Observations indicate that the westerly jet in the Southern Hemisphere troposphere is accelerating. Using a global aerosol model we estimate that the increase in wind speed of 0.45 + /- 0.2 m s(-1) decade(-1) at 50-65 degrees S since the early 1980s caused a higher sea spray flux, resulting in an increase of cloud condensation nucleus concentrations of more than 85% in some regions, and of 22% on average between 50 and 65 degrees S. These fractional increases are similar in magnitude to the decreases over many northern hemisphere land areas due to changes in air pollution over the same period. The change in cloud drop concentrations causes an increase in cloud reflectivity and a summertime radiative forcing between at 50 and 65 degrees S comparable in magnitude but acting against that from greenhouse gas forcing over the same time period, and thus represents a substantial negative climate feedback. However, recovery of Antarctic ozone depletion in the next two decades will likely cause a fall in wind speeds, a decrease in cloud drop concentration and a correspondingly weaker cloud feedback

    Discrimination of maize crop with hybrid polarimetric RISAT1 data

    Get PDF
    Microwave remote sensing provides an attractive approach to determine the spatial variability of crop characteristics. Synthetic aperture radar (SAR) image data provide unique possibility of acquiring data in all weather conditions. Several studies have used fully polarimetric data for extracting crop information, but it is limited by swath width. This study aimed to delineate maize crop using single date hybrid dual polarimetric Radar Imaging Satellite (RISAT)-1, Fine Resolution Stripmap mode (FRS)-1 data. Raney decomposition technique was used for explaining different scattering mechanisms of maize crop. Supervised classification on the decomposition image discriminated maize crop from other land-cover features. Results were compared with Resourcesat-2, Linear Imaging Self Scanner (LISS)-III optical sensor derived information. Spatial agreement of 91% was achieved between outputs generated from Resourcesat-2, LISS-III sensor and RISAT-1 data

    Decreasing intensity of open-ocean convection in the Greenland and Iceland seas

    Get PDF
    The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC

    Monitoring of Spatio-temporal Dynamics of Rabi Rice Fallows in South-Asia using Remote Sensing

    Get PDF
    Cereals and grain legumes are the most important part of human diet and nutrition. The rural population of low income groups in dry land areas of South Asia depends on these staples. Expansion of grain legumes with improved productivity to cater the growing population’s nutritional security is of prime importance and need of the hour. Rice-fallows are best niche areas with residual moisture to grow short duration legumes there by achieving intensification. Identifying suitable areas for grain legumes and cereal grains is important in this region. In this context, the goal of this study was to map fallow lands followed by rainy season (kharif) rice cultivation or post rainy (rabi) fallows in rice growing environments between 2005 and 2015 using temporal moderate-resolution imaging Spectroradiometer (MODIS) data applying Spectral matching techniques. This study was conducted in South Asia where different rice eco-systems exist. MODIS 16-days normalized difference vegetation index (NDVI) at 250m spatial resolution and season wise intensive ground survey data were used to map rice systems and the fallows thereafter (rabi-fallows) in South Asia. The rice maps were validated with independent ground survey data and compared with available sub-national level statistics. Overall accuracy and kappa coefficient estimated for rice classes were 81.5% and 0.79 respectively with ground survey data. The derived physical rice area and irrigated areas were highly correlated with the sub-national statistics with R2 values of 84% at the district level for the year 2005-06 and 2015-16. Results clearly show that rice-fallows areas increased from 2005 to 2015. The results show spatial distribution of rice-fallows in South Asia which are identified as target domains for sustainable intensification of short duration grain legumes, fixing the soil nitrogen and increasing incomes of small holder farmers

    Rossby wave dynamics of the North Pacific extra-tropical response to El Niño: importance of the basic state in coupled GCMs

    Get PDF
    The extra-tropical response to El Nino in a "low" horizontal resolution coupled climate model, typical of the Intergovernmental Panel on Climate Change fourth assessment report simulations, is shown to have serious systematic errors. A high resolution configuration of the same model has a much improved response that is similar to observations. The errors in the low resolution model are traced to an incorrect representation of the atmospheric teleconnection mechanism that controls the extra-tropical sea surface temperatures (SSTs) during El Nino. This is due to an unrealistic atmospheric mean state, which changes the propagation characteristics of Rossby waves. These erroneous upper tropospheric circulation anomalies then induce erroneous surface circulation features over the North Pacific. The associated surface wind speed and direction errors create erroneous surface flux and upwelling anomalies which finally lead to the incorrect extra-tropical SST response to El Nino in the low resolution model. This highlights the sensitivity of the climate response to a single link in a chain of complex climatic processes. The correct representation of these processes in the high resolution model indicates the importance of horizontal resolution in resolving such processes

    Power allocation strategies for distributed precoded multicell based systems

    Get PDF
    Multicell cooperation is a promising solution for cellular wireless systems to mitigate intercell interference, improve system fairness, and increase capacity. In this article, we propose power allocation techniques for the downlink of distributed, precoded, multicell cellular-based systems. The precoder is designed in two phases: first the intercell interference is removed by applying a set of distributed precoding vectors; then the system is further optimized through power allocation. Three centralized power allocation algorithms with per-BS power constraint and diferente complexity trade-offs are proposed: one optimal in terms of minimization of the instantaneous average bit error rate (BER), and two suboptimal. In this latter approach, the powers are computed in two phases. First, the powers are derived under total power constraint (TPC) and two criterions are considered, namely, minimization of the instantaneous average BER and minimization of the sum of inverse of signal-to-noise ratio. Then, the final powers are computed to satisfy the individual per-BS power constraint. The performance of the proposed schemes is evaluated, considering typical pedestrian scenarios based on LTE specifications. The numerical results show that the proposed suboptimal schemes achieve a performance very close to the optimal but with lower computational complexity. Moreover, the performance of the proposed per-BS precoding schemes is close to the one obtained considering TPC over a supercell.Portuguese CADWIN - PTDC/ EEA TEL/099241/200
    • …
    corecore