240 research outputs found

    Role of proton irradiation and relative air humidity on iron corrosion

    Full text link
    This paper presents a study of the effects of proton irradiation on iron corrosion. Since it is known that in humid atmospheres, iron corrosion is enhanced by the double influence of air and humidity, we studied the iron corrosion under irradiation with a 45% relative humidity. Three proton beam intensities (5, 10 and 20 nA) were used. To characterise the corrosion layer, we used ion beam methods (Rutherford Backscattering Spectrometry (RBS), Elastic Recoil Detection Analysis (ERDA)) and X-ray Diffraction (XRD) analysis. The corrosion kinetics are plotted for each proton flux. A diffusion model of the oxidant species is proposed, taking into account the fact that the flux through the surface is dependent on the kinetic factor K. This model provides evidence for the dependence of the diffusion coefficient, D, and the kinetic factor, K, on the proton beam intensity. Comparison of the values for D with the diffusion coefficients for thermal oxygen diffusion in iron at 300 K suggests an enhancement due to irradiation of 6 orders of magnitude

    Stabilization of Tollmien-Schlichting Waves by Mode Interaction

    Get PDF
    Decreasing skin friction in boundary layers attached to aircraft wings can have an impact in both fuel consumption and pollutant production, which are becoming crucial to reduce operation costs and meet environmental regulations, respectively. Skin friction in turbulent boundary layers is about ten times that of laminar boundary layers. Thus, an obvious method to reduce friction drag is to delay transition to turbulence, which is a fairly involved process in real aircraft wings [J98]. Transition sis promoted either by Tollmien—Schlichting (TS) and Klebanov (K) modes [K94], with the former playing an essential role. Various methods (e.g., suction [SG00,ZLB04], wave cancellation [WAA01,LG06]) have been proposed to reduce TS modes in laminar boundary layers. Mode interaction methods have been successfully used in fluid systems to control related instabilities, such as the Rayleigh—Taylor instability [LMV01]. Here, we present some recent results on using these methods to control TS modes in a compressible, 2D boundary layer over a flat plate at zero incidence. A given unstable TS mode can be stabilized by coupling its spatial evolution with that of a second selected stable TS mode, in such a way that the stable mode takes energy from the unstable one and gives a stable coupled evolution of both modes. The coupling device is a wavetrain in the boundary layer, with appropriate wavenumber and frequency, which can be created by an array of oscillators on the wall, and promotes both (i) parametric coupling between the stable and unstable TS modes and (ii) a mean flow that is also stabilizing. Three differences with wave cancelation methods are relevant. Namely, (a) nonlinear terms play an essential role in the process; (b) the unstable TS mode is stabilized (its growth rate is decreased), not just canceled; and (c) stabilization does not depend on the phase of the incoming wave, which implies that active control is not necessary

    Use of the point defect model to interpret the iron oxidation kinetics under proton irradiation

    No full text
    This article concerns the study of iron corrosion in wet air under mega-electron-volt proton irradiation for different fluxes at room temperature and with a relative humidity fixed to 45%. Oxidized iron sample surfaces are characterized by ion beam analysis (Rutherford backscattering spectrometry and elastic recoil detection analysis), for the elemental analysis. The structural and physicochemical characterization is performed using the x-ray photoelectron spectroscopy and transmission electron microscopy techniques. We have also measured the iron oxidation kinetics. Radiation enhanced diffusion and transport processes have been evidenced. The modeling of the experimental data shows that the apparent oxygen diffusion coefficient increases whereas the oxygen transport velocity decreases as function of flux. Finally, the point defect model has been used to determine the electric field value in the samples. Results have shown that the transport process can be attributed to the presence of an electrical potential gradient

    Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine

    Full text link
    Fuel reactivity controlled compression ignition (RCCI) concept has arisen as a solution to control premixed combustion (PCI) strategies, which avoids soot and NOx formation by promoting a lean air fuel mixture and low temperature combustion. Thus, this study is focused on investigating the effects of different engine operating variables over combustion, to be able to suggest suitable strategies for extending the RCCI operation from low to full load, in a HD single-cylinder research engine. Different strategies are implemented at low, medium and high load, varying fuel and air reactivity, by means of parametrical studies. Performance and emissions results are analyzed combining engine testing with 3D-CFD modeling. Based on those results, an overlimit function is used to select the best engine settings for each operating point. Finally, engine emissions and performance results from that RCCI operation are compared with conventional Diesel combustion (CDC). Results suggest that double injection strategies should be used for RCCI operation from low to mid load. However, from high to full load operation, single injection strategies should be used, mainly to avoid excessive in-cylinder pressure gradients. In addition, it is confirmed the suitability of RCCI combustion to overcome the soot NOx trade-off characteristic of CDC, from 6 to 24 bar of BMEP, while improving fuel consumption.The authors would like to recognize the technical support from VOLVO Group Trucks Technology and to express their gratitude to CONVERGENT SCIENCE Inc. and IGNITE3D Engineer-ing GmbH for their kind support for performing the CFD calculations using CONVERGE software. In addition, thank the Spanish Ministry of Economy and Competitiveness for the financial support through Eduardo Belarte's grant (BES-2011-047073). The authors would also like to thank Gabriel Alcantarilla for the management of the facility and his assistance in data acquisition.Molina Alcaide, SA.; García Martínez, A.; Pastor Enguídanos, JM.; Belarte Mañes, E.; Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy. 143:211-227. https://doi.org/10.1016/j.apenergy.2015.01.035S21122714

    Influence of the addition of LPG-reformate and H2 on an engine dually fuelled with LPG–diesel, –RME and –GTL Fuels

    Get PDF
    AbstractDual fuel compression ignition engine has been proposed as one approach to reduce diesel engine regulated emissions (NOX and Soot) and to also allow the utilisation of other non-traditional fuels in transportation, in order to improve fuel security and CO2 emissions. In an attempt to improve the combustion characteristics of the LPG–diesel dual fuelled engine the influence of the (a) hydrogen and reformate (H2 and CO) additions and (b) properties of the in-cylinder injected diesel fuel, in this case diesel, biodiesel and synthetic diesel fuel were investigated.Improvements on engine thermal efficiency and HC (including particular HC species) emissions with the reformate and further improvements on CO, soot and particulate matter with hydrogen with respect to LPG–diesel dual fuel combustion were obtained. However, an increase in NOX was obtained due to the high in-cylinder temperature as a result of the shorter advanced premixed combustion. Moreover, the RME’s oxygen content, different injection (i.e. different high bulk modulus) and combustion characteristics as a result of its properties modified the combustion process and hence produced even lower HC, CO, soot and PM emissions. On the other hand, the lower density of GTL has changed the diesel fuel injection and combustion characteristics in dual fuelling mode which resulted in the increased regulated (HC and CO) and unregulated emissions. However, LPG–GTL dual fuelling with reformate and H2 addition showed better smoke-NOX trade-off compared to that of ULSD and RME

    Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers

    Get PDF
    We consider a horizontal heavy fluid layer supported by a light, immiscible one in a wide (as compared to depth) container, which is vertically vibrated intending to counterbalance the Rayleigh-Taylor instability of the flat, rigid-body vibrating state. In the simplest case when the density and viscosity of the lighter fluid are small compared to their counterparts in the heavier fluid, we apply a long wave, weakly nonlinear analysis that yields a generalized Cahn-Hilliard equation for the evolution of the fluid interface. This equation shows that the stabilizing effect of vibration is like that of surface tension, and is used to analyze the linear stability of the flat state, the local bifurcation at the instability threshold and some global existence and stability properties concerning the steady states without dry spots. The analysis is extended to two cases of practical interest. Namely, (a) the viscosity of one of the fluids is much smaller than that of the other one, and (b) the densities and viscosities of both fluids are quite close to each other

    Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure

    Get PDF
    Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of hospitalization for heart failure or death from cardiovascular causes among patients with stable heart failure. However, the safety and efficacy of SGLT2 inhibitors when initiated soon after an episode of decompensated heart failure are unknown

    Instability of the steady states of some Ginzburg–Landau-like equations with real coefficients

    Get PDF
    The instability of the steady states with nonconstant amplitude is analysed for a nonlocal Ginzburg–Landau equation with real coefficients and quasiperiodic boundary conditions. The results are obtained in terms of easily recognized, qualitative properties of the steady states. Some of the results are new, even for the standard (local) Ginzburg–Landau equation with real coefficients. A related Ginzburg–Landau equation coupled to a mean field is also considered that appears in the analyses of counter-propagating waves in extended systems, nonoscillatory instabilities with a conservation law, and viscous Faraday waves in large aspect ratio containers

    Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander

    Full text link
    This paper deals with the experimental testing of an Organic Rankine Cycle (ORC) integrate in a 2 liter turbocharged gasoline engine using ethanol as working fluid. The main components of the cycle are a boiler, a condenser, a pump and a swash-plate expander. Five engine operating points have been tested, they correspond to a nominal heat input into the boiler of 5, 12, 20, 25 and 30 kW. With the available bill of material based on prototypes, power balances and cycles efficiencies were estimated, obtaining a maximum improvement in the ICE mechanical power and an expander shaft power of 3.7% and 1.83 kW respectively. A total of 28 steady-state operating points were measured to evaluate performance of the swash-plate expander prototype. Operating parameters of the expander, such as expander speed and expansion ratio, were shifted. The objective of the tests is to master the system and understand physical parameters influence. The importance of each parameter was analyzed by fixing all the parameters, changing each time one specific value. In these sensitivity studies, maximum ideal and real Rankine efficiency value of 19% and 6% were obtained respectively.This work is part of a research project called "Evaluation of bottoming cycles in IC engines to recover waste heat energies" funded by a National Project of the Spanish Government with reference TRA2013-46408-R.Galindo, J.; Ruiz Rosales, S.; Dolz Ruiz, V.; Royo Pascual, L.; Haller, R.; Nicolas, B.; Glavatskaya, Y. (2015). Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander. Energy Conversion and Management. 103:519-532. https://doi.org/10.1016/j.enconman.2015.06.085S51953210
    • …
    corecore