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We consider a horizontal heavy fluid layer supported by a light, immiscible one in a wide (as compared to 
depth) container, which is vertically vibrated intending to counterbalance the Rayleigh-Taylor instability of the 
flat, rigid-body vibrating state. In the simplest case when the density and viscosity of the lighter fluid are small 
compared to their counterparts in the heavier fluid, we apply a long wave, weakly nonlinear analysis that yields 
a generalized Cahn-Hilliard equation for the evolution of the fluid interface. This equation shows that the 
stabilizing effect of vibration is like that of surface tensión, and is used to analyze the linear stability of the flat 
state, the local bifurcation at the instability threshold and some global existence and stability properties 
concerning the steady states without dry spots. The analysis is extended to two cases of practical interest. 
Namely, (a) the viscosity of one of the fluids is much smaller than that of the other one, and (b) the densities 
and viscosities of both fluids are quite cióse to each other. 
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I. INTRODUCTION AND FORMULATION 

This paper deals with the Rayleigh-Taylor (RT) instability 
[1,2] (see also [3,4] and references therein), which appears 
when a light fluid is accelerated toward a denser one. Thus 
this instability plays a role in accelerated fronts, which are of 
interest in, e.g., combustión [5], plasma physics [6], and as-
trophysics [7]. The analysis of RT instabilities in technologi-
cal applications such as inertial confinement fusión [6] en-
counters considerable difficulties because this instability 
often exhibits a transient nature and/or comes into play in 
nonstatic conditions, involving convection, heat flow, mass 
ablation, and inhomogeneities, which affect the instability 
growth rate. In order to avoid these and deal with a clean 
formulation, amenable to analytical treatment, we consider 
the simplest configuration exhibiting this instability, namely, 
that in which a horizontal heavy fluid layer is supported by a 
lighter fluid, the destabilizing acceleration being provided by 
gravity. In this configuration, the instability can be counter-
balanced by an imposed vertical vibration of the container, 
as already shown experimentally [8,9]; see also [9-11] for a 
first theoretical explanation. The main object of this paper is 
to provide a weakly nonlinear theory of this stabilizing effect 
in the limiting case when both the aspect ratio of the con­
tainer and the vibrating frequency are appropriately large. 
Let us mention here that to our knowledge no consistently 
simplified evolution equations like the ones derived below, 
accounting for both nonlinearity and viscous effects, are 
found in the literature for the evolution of the RT instability 
in the presence of vibration; and similar evolution equations 
in nonvibrating systems are of limited scope [4], 

Although we shall deal with a more general situation in 
See. IV, in order to Alústrate both the analysis and the re-
sults, we first consider in Secs. II and III the limiting case in 
which the lighter fluid can be ignored, which is justified 
when its density and viscosity are small compared to their 
counterparts, p and v, in the heavier fluid. Thus we consider 
a wide cylindrical container of horizontal size / and depth 
h<f, which is vertically vibrated and placed in inverted 
position (see Fig. 1), with gravity acting downwards. We use 

the depth h and the viscous time h2lv as characteristic length 
and time for nondimensionalization and a Cartesian coordi-
nate system attached to the container, with the z = 0 plañe on 
the unperturbed free surface, assumed to be horizontal. The 
(nondimensional) governing equations are 

V-u+¿>w/¿>z = 0, (1.1) 

duldt+ (u • V)u + w duldz = - Vp + Au+ d2uldz2, 
(1.2) 

dwldt + U- Vw + Wdwldz= - dpi'dz + Aw + d2WI'dz2. 

(1.3) 

if (x,y)eCl andf(x,y,t)<z<l, withboundary conditions 

u = 0, w = 0 if z = l andif (x,y) edil, (1.4) 

w = dfldt + u-Vf, 

du/áz + Vw = 0( |Vu | |V/ | + (|áu/áz| + |Vw|)|V/12) 

if z=f, (1.5) 

p-aw2fcos(wt)-BC-2f-C-2V-[Vf/(l + \Vf]2)1'2] 

= 2<?w/<?z+0(|Vu| + (|<?u/<?z| + |Vw|)|V/|) if z=f, 

(1.6) 

Vf-n=-Ddfldt or / = 0 if (x,y)<=dü,. 

f(x,y,t)dxdy = 0, (1.7) 

-] a* cos(2irui*t*) 

FIG. 1. Sketch of the side view of the container. 
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FIG. 2. A typical linear stability diagram of the static steady 
state (1.11). The regions where this fíat state is stable (S) and un-
stable (U) are indicated. 

where u and w are the horizontal and vertical velocity, p 
= pressure+ [a co2cos(cot)+B/C2]z is a modified pressure and 

/ i s the vertical free-surface deflection, assumed along the 
paper to be such that 

IY/HL/1. (1.8) 

V, V-, and A are the horizontal gradient, divergence, and 
Laplacian operators, Cl is the transversal cross section of the 
container, dCl is its boundary, and n is the (horizontal) out-
ward unit normal to díl. The domain Cl is large and homo-
thetic to a fixed two-dimensional (2D) domain; the (dimen-
sionless) characteristic size of ft, 

L = /lh>\. (1.9) 

is the aspect ratio of the container and 

B = pgh2/cr and C=v^pl{crh) (1.10) 

are the Bond number and the capillary number respectively; 
here g is the gravitational acceleration and <x is the surface 
tensión coefficient. In the first boundary condition (1.7) ei-
ther we allow a contact line motion or not. In the former case 
we assume that the static contact angle is 90° and employ the 
usual phenomenological law (see, e.g., [12,13]) to account 
for contact line dynamics; the phenomenological constató D 
is positive and thus the motion of the contact line is dissipa-
tive. And when the contact line is fixed (at the upper edge of 
the lateral wall) we assume that the height of the lateral wall 
is h and the liquid volume equals h times the área of ft. Note 
that the rigid-body oscillating, flat state 

u = 0, w=p = 0, / = 0 (1.11) 

is a (steady) solution of Eqs. (1.1)-(1.7) in both cases. The 
linear stability diagram of this solution is always like that 
sketched in Fig. 2, where 

aFcol,2^K*>0 and a^co^K^X) as &>^°°. 
(1.12) 

The upper and lower marginal instability curves correspond 
to the Faraday instability and the RT instability, respec­

tively, which are considered in Sec. IIA and Sec. IIB. The 
analysis in this paper applies in the stable región of Fig. 2, 
outside a neighborhood of the upper instability boundary; 
thus the eigenmodes associated with the Faraday instability 
are exponentially stable and can be ignored. 

Figure 2 is qualitatively similar to the one obtained ex-
perimentally by Wolf [9] and illustrates that stabilization is 
always feasible provided that co is sufficiently large. Of 
course, the forcing frequency is bounded in practice to no 
higher than ultrasound frequencies (say, s 20 kHz); a second 
limit results from the mechanical difficulties in imposing too 
large an acceleration (note that the nondimensional accelera­
tion acó2 grows with co along the lower bound of the stable 
región in Fig. 2). 

Thus we shall be mainly concerned below with the limit 
w^oo. But for simplicity we shall begin in Sec. IIA with the 
linear stability analysis of the basic steady state (1.11) in the 
viscous limit 

BL2~C~D/L4~a~co~l. (1.13) 

which yields the most general results because in this limit no 
further approximation is made (in addition to linearization). 
That analysis will also be valid for large co and will help us 
to identify the distinguished limit 

BL2~acoC~a2co2D/L3~L co>l. (1.14) 

which is the limit that provides the most general results for 
large forcing frequency. This limit will be considered in Sec. 
III, where the leading nonlinear terms will also be taken into 
account to obtain an evolution equation for the free surface 
deflection. Finally, the more general case of a two-fluid layer 
will be considered in Sec. IV, where for simplicity the final 
form of the evolution equation accounting for weakly non-
linear dynamics will be only derived in two limiting cases, 
namely, that in which one of the fluids is inviscid compared 
to the other one, and that in which the densities and viscosi-
ties of both fluids are almost equal. 

II. LINEAR STABILITY OF THE FLAT STATE 

Let us linearize Eqs. (1.1)-(1.7) around the basic state 
(1.11) to obtain 

2 . . / ->_2 V-u+dw/dz = 0, du/dt=-Vp + Au+d2u/dz 
(2.1) 

dwldt= - dp/dz + Aw + d2w/dz2, 

if (x,y) e í l and 0 < z < l , and 

u = 0, w = 0 if z=\ andif (x,y)edíl, (2.2) 

w = df/dt, <?u/<?z + Vw = 0 if z = 0, (2.3) 

p-aco2fcos(cot)-BC-2f-C-2Af=2¿)w/¿)z if z = 0. 
(2.4) 

Vf-n=-Ddfldt or / = 0 if (x,y)<=dü,. 



f(x,y,t)dxdy = 0. (2.5) 

As anticipated in Sea I and illustrated in Fig. 2, marginal 
instability occurs at two possible type of modes, which ex-
hibit short and large wavelengths, of the order of the depth 
and the width of the container, respectively. 

A. Short-wave instability: Faraday waves 

This instability, named after Faraday [14], has been thor-
oughly studied [15-17]. In the limits (1.13) and (1.14) the 
most unstable modes exhibit a wavelength that is at the most 
of the order unity. Since the container cross section is large, 
end-wall effects are usually ignored, and the stability analy-
sis of Eqs. (2.1)-(2.5) is made by only considering the nor­
mal modes, which are of the form 

(u,w,p,f) = (V,W,P,F)exp[i(k1x + k2y)] + c.c. 
(2.6) 

where U, W, and P depend only on z and /, and F depends 
only on / and ce. denotes the complex conjúgate. Substitu-
tion of these expressions into Eqs. (2.1)-(2.5) and elimina-
tion of U yield 

Pzz = k2P, Wt=-Pz+Wzz-k
2W, 

W=W=0, at z = - l . 

W-Ft=Wzz + k2W=Q, at z = 0, 

P-aco2Fcos(cot)-(B-k2)F/C2 = 2Wz at 

(2.7) 

(2.8) 

(2.9) 

z = 0, 
(2.10) 

where k=^jk2 + k2
2 is the wave number of the mode. The 

calculation of the instability threshold forcing amplitude aF 

requires to determine those Floquet exponents of Eqs. (2.7)-
(2.10) whose real part vanishes; in fact, these exponents are 
numerically found to be either 0 or i ir, which correspond to 
real Floquet multipliers 1 or - 1, respectively. For fixed val­
úes of the remaining parameters, this determines a curve a-k 
whose absolute minimum yields aF. The numerical calcula­
tion of the Floquet exponents is fairly cheap, even for ex­
treme valúes of the parameters, by using the method de-
scribed in Ref [18]. The problem still depends on w, B, and 
C, which makes its analysis fairly tedious. For the sake of 
brevity we only give results here for sufficiently large forc­
ing frequeney, namely, 

\ + {Bic2y¡i<(ó (2.11) 

which is the more convenient one for the main object of this 
paper. In this limit, gravity can be neglected and the margin-
ally unstable modes exhibit a short wavelength k~l~(ú~m 

< 1. As a consequence, Eqs. (2.7)-(2.10) can be further res-
caled to obtain a new problem that only depends on a res-
caled wave number co~l,2k and on the parameters a^oj and 
C4co. Using the latter two parameters, we numerically obtain 
the instability threshold curve plotted in Fig. 3, which pro-
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FIG. 3. A plot of the rescaled Faraday instability threshold am­
plitude aFcom=(2TTco*v'v)ma*P in terms oí C4co = 2Trco*p2v3/a2 

in the limit (2.11); the asymptotes as C4a>^0 and CAÍX>^«¡ are 
plotted with dotted lines. 

vides the upper instability limit in the sketch in Fig. 2. Note 
that this curve satisfies the first condition (1.12), with 

K*^l.67. (2.12) 

Let us point out here that the additional requirement 
(B/C2)2l3<íco inEq. (2.11) is seento be automatically satis-
fied in the stable región sketched in Fig. 2 when the upper 
boundary is as calculated here and the lower one is as given 
by Eq. (2.40) below. Thus this additional condition is unnec-
essary when seeking stability in the limit coí> 1. 

B. Long-wave instability: Rayleigh-Taylor 

As is well known [3], in the absence of vibration (if a 
= 0) the linear problem (2.1)-(2.5) exhibits exponential in­
stability (i.e., the RT instability) whenever 

B=BL2>X0, 

where X0 is the lowest eigenvalue of, 

A F + \ F = c o n s t i n fí, dF/dñ=0 or F=0 on ¿>ü 

(2.13) 

with 

F dxdy = 0. 
ñ 

2 ~ , A = d¿7'dx¿: + d¿7'dy¿, x = xlL, y=ylL 

(2.14) 

(2.15) 

O is the result of rescaling Cí with L and dldn is the result-
ing derivative along the outward unit normal. For the sim-
plest cross sections, namely, the circle of diameter 1, ñx and 
the rectangle of sides d^ 1 and 1, ñ2, the lowest eigenvalue 
X.0, and an associated eigenfunction F0 are given by 

X0 = 4yl Fo=J,(2y,r)cos(0-0o) in Clu 

and X0 = TT /d , F0 = cos(Trx/d) in Cl7 

(2.16) 

if the first boundary condition in Eq. (2.14) applies, where 
yj — 2.40 is the first positive root of the derivative J[ of the 



first Bessel function Jl, r and 9 are polar coordinates, and 0O 

is an arbitrary constató resulting from invariance under rota-
tion; and 

Xo = 4r^, Fo=J,(2y2r)cos(0-0o) in í l , 
(2.17) 

\0 = ir +4ir /d , F0 = sia.(2irx/d)sÍD.('jry) in £l2, 

if the second boundary condition in Eq. (2.14) applies, where 
y2 —3.83 is the first positive root of J¡. Note that all these 
eigenfunctions are antisymmetric on a straight line (x = d/2 

in í l j or 9=90±TTI2 in Cí2). There are also symmetric 
eigenfunctions, but they are associated with larger eigenval-
ues. 

Thus the instability sets infor 0(L~2) valúes of the Bond 
number B. Viscosity does not affect the instability threshold 
and the only stabilizing effect results from the surface ten­
sión. In fact, the stabilizing effect of vibration in this limit is 
to "créate a surface-tension-like" mechanism as we show 
now. To this end, we consider the viscous limit (1.13) and 
use a two-time-scales method as follows. In the distinguished 
limit (1.13) we rescale the Bond number and the horizontal 
space variables as in Eqs. (2.13) and (2.15), introduce the 
slow time variable 

7=t/L4 (2.18) 

and seek solutions of Eqs. (2.1)-(2.5) of the form 

u = Z~1u0(x,.y,z,7)eift'í+Zr3h.o.h. + c.c. 

+ L~3us(x,y,z,t) + • • •, 

w=L~2wo(x,y,zJ)eia>t + L~4h.0.h. + c.c. 

+ L-4ws(x,y,zJ)+---, (2.19) 

p=p0(x,y,zJ)eimt + L~2h.o.h. + c.c. 

+ L~2ps(x,y,z,7)+---, 

f=L-2fo(x,yJ)e""'+L-4h.0.h. + c.c.+fs(x,yJ)+- ••, 

where ce. denotes the complex conjúgate and ho.h. stands 
for higher order harmonios, depending on the fast time vari­
able / as e'mmt, with /w#0,± 1. The scalings (2.19) are ob-
tained by an orders-of-magnitude analysis in Eqs. (2.1)-
(2.5), anticipating that in the absence of vibration the 
dispersión relation of the long-wave modes of Eqs. (2.7)-
(2.10) associated with the RT instability is ¡x (= growth 
rate) = (B-k2)k2/(3C2) + 0(k6) ask^O. Substituting Eq. 
(2.15) and Eqs. (2.18) and (2.19) into Eqs. (2.1)-(2.4) and 
the last equation in Eq. (2.5) yields 

V -U0+ dwo/dz = 0, Í0JUo= —V' p 0+ d2U0 I' dz2, 

dpoldz = 0, (2.20) 

V-us+dws/dz = 0, Vps = d2us/dz2, dps/dz = 0, 

(2.21) 

if (x,y) e í l and 0 < z < l , and 

uo = u, = 0, wo = ws = 0 i f z = l , (2.22) 

W0 = i(úf0, W s=dfsldt, duo/dz = dus/dZ = 0 i f z = 0, 

(2.23) 

p0 = aco2fs/2, 

p=aco2(f0+f0)/2 + BC-2fs+C-2Kfs if z = 0, 
(2.24) 

fsdxdy = 0. 
ñ 

(2.25) 

where ft, V, and A are as defined above and the overbar 
denotes the complex conjúgate. Equations (2.20)-(2.24) do 
not apply in a boundary layer of 0(1) thickness near the 
lateral walls. The analysis of this boundary layer (see Appen-
dix A) provides the following boundary conditions for the 
solution in the bulk: 

dfs/dn=—Ddfs/dt or fs = 0, us-ndz = 0 on díl. 
Jo 

(2.26) 

where n is the unit outward normal to dü, as above, 

D = 2D/[{2 + a2co2C2(¡>(üj)}L3l (2.27) 
and the function cf> is defined as 

4>(o>) = 1 -Re((V"tí)" l tanh Jiü) (2.28) 

with Re standing for the real part. Note that 

<f>((ú)>0 forall&)>0, and </>(w)^l as co^c 

Integration of Eqs. (2.20)-(2.24) yields 

p0 = aco2fs/2, 

u„ = /(flW2)[l -(cosh V¿&>)_1 cosh ^fíwz]Vfs 

(2.29) 

(2.30) 

w0 = i(aco/2)[l — z — (y/io) cosh y/ico) ] 

X(smhyfiüj — sihh y/hoz)] Afs, (2.31) 

f0 = (a/2)[l-(y[ñ¿)-1 tanhy[ñ¿]Kfs, (2.32) 

us = (z2-\)VpJ2, ws=-(2-3z + z3)Kp¿6, 

dfsldi=-Kpsl\ (2.33) 

Ps = BC-2fs+[C-2 + a2w2<f>(w)/2]Kfs, (2.34) 
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FIG. 4. A plot of the rescaled RT instability threshold accelera­
tion, A = [^C/(jBL)]aRTco2 = [\o2h5l2/(/gy2v)]a%T(2Trco*)2, 
in terms of the nondimensional forcing frequency, (o = 2Tra>*h2/v, 
for the indicated valúes of the parameter a = \0l(BL2) 
= \0cr/(pg/2), as given by Eq. (2.38). 

where the function cb is as defined in Eq. (2.28). And a 
further substitution of Eq. (2.34) into the last equation in Eq. 
(2.33) leads to 

3dfs/dT+ BC-2Kfs+[C-2 + a2co2(¡>(üj)/2]K2fs 

= 0 in ñ, (2.35) 

where A2 stands for the biharmonic operator. In addition, we 
must use the volume conservation condition (2.25) and the 
boundary conditions (2.26) that, using the first expression 
(2.33), are 

dfsldñ=-Ddfsldt or fs = 0, 

BC~2 dfs I dñ+[C~2 + a2 CÚ2 tb(cú)l2]dKfs I dñ=0 (2.36) 

f 
on dCl, fsdxdy = 0. 

Jñ 

Note that, as anticipated above, the effect of vibration 
[measured by the term a 2&>2 </>(&>)] is equivalent to enhanc-
ing the effective surface tensión of the free surface, measured 
by C~2 in nondimensional terms. According to the analysis 
in Appendix B, this solution is asymptotically stable, if and 
only if 

BL2=B<Bc=X0[l + C2a2co2<f>(co)/2], (2.37) 

where X0 is m e lowest eigenvalue of Eq. (2.14). Thus, the 
instability threshold amplitude aRT is given by 

[\0C
2/(BL2)]a2

RTco2 = 2[l-\0/(BL2)]/cb(co) 
(2.38) 

and yields the threshold acceleration plotted vs co in Fig. 4 
for several valúes of the parameter X0 l(BL2), which must be 
such that 0^\0/(BL2)< 1, m order that the system is un-
stable in the absence of vibration (otherwise, the RT insta­
bility does not appear). Note that, according to the nondi-

mensionalization in See. I, \0/(BL2) = \0cr/(pg/2). If the 
surface tensión is not much larger and the density is not 
much smaller than those of the water, this parameter is small 
whenever the horizontal size of the container is large com­
pared to the capillary length (\¡a-/(pg)~3 mm). 

Some remarks about this result are now in order: 
(1) The stabüizing effect of vibration is like that of sur-

face tensión, which can be completely substituted by vibra­
tion. In the absence of surface tensión C 2 ~ 5 ^ ° ° and the 
instability threshold is given by the highest curve in Fig. 4. 
The origin of this stabüizing effect is clear from the solution 
(2.30)-(2.34) of Eqs. (2.20)-(2.24). If a (nonconstant) free 
surface deflection fs is present then the system cannot ví­
brate as a rigid body and an oscillating flow appears whose 
associated free surface deflection is proportional to aKfs 

[see Eq. (2.32)] and in turn produces [through nonlinear in-
teraction with the primary oscillating pressure field 
- aco2z cos(cot), accounted for in the second term in the left-
hand side of Eq. (2.4)] a nonoscillating overpressure propor­
tional to a2co2Kfs; this is the stabüizing term. 

(2) The new instability threshold Bc given in Eq. (2.37) is 
higher than that in the absence of vibration, which is \ 0 . For 
fixed valúes of the remaining parameters, the plot aRTco2 vs. 
co in Fig. 4 is as sketched in the lower curve in Fig. 2 and 
satisfies Eq. (1.12), with K* = ^2(BL2-\0)/(\0C

2). 
(3) If a and co are bounded then, according to Eq. (2.37) 

stabilization is only possible iíBL2 is bounded, which means 
[see Eq. (1.9)] that B must be quite small, and this requires 
that the depth be extremely small on earth conditions. Con­
dition (2.37) is written in dimensional terms (see See. I) as 

/2<\0[a/(Pg) + (2iTa*üj*)2hcl>(2iTüj*h2/v)/(2g)l 
(2.39) 

where a* and co* are the dimensional forcing amplitude and 
frequency. Thus the instability limit depends on viscosity (v) 
through the argument of the function cb. This is not surpris-
ing because the stabilization due to vibration is due to oscil-
lations in the bulk that are viscous if co = 2Trco*h2/v is 
bounded. In particular, as v increases the viscous time h2lv 
decreases, and the forcing frequency co* must also increase 
to maintain the stabüizing effect of vibration. The situation is 
much better as aco^^, which is easily achieved in the real-
istic limit to^oo, when [cf>(co)^l, see Eq. (2.29), and] con­
ditions (2.37) and (2.39) become 

BL2<X0[ 1 + C2a2co2cb{ to) 12] 

and 

/2<X0[(j/(pg) + (2TTa*cú*)2h/2g]. (2.40) 

This condition is independent of viscosity [which in this 
limit CÚÍ> 1 only comes into play through the Faraday insta­
bility, see remark (4) below]. The reason is that now the 
oscillatory flow that produces the stabüizing effect is invis-
cid except in boundary layers, which only produce a higher 
order effect. If, for illustration, we consider a circular con­
tainer of diameter / = 5 cm and depth h = 5 mm (thus the 



aspect ratio flh = 10 is large) and assume that the contact 
line is fixed, then \ü = \y\ — 58.7 [see Eq. (2.17)] and the 
condition (2.40) is satisfied provided that 

o7p<s418 cm3/s2 and 27ra*&>*>40.9 cm/s. 
(2.41) 

(4) In addition, we must avoid the Faraday instability by 
requiring that a\[co is below the curve in Fig. 3; the validity 
conditions (2.11) are seen to be satisfied for both mineral oil 
and water. For a sufficiently large forcing frequency, Faraday 
waves are avoided, provided that a\[co<K*, which is writ-
ten in dimensional terms as 2T7co*(a*)2s^K*2v, and this is 
compatible with Eq. (2.41) only if 2TTCO*V^600 cm2/s2. 
This condition is satisfied for mineral oil (v~l cm2/s) if. 
say, CÚ* = 102 Hz and a* —0.6 mm, and for clean water (v 
= 0.01 cm2/s), if &>* = 104 Hzanda* = 6/«m. Of course the 
situation is much better both in microgravity conditions and 
when the liquid layer is supported by another layer of liquid 
of nonzero density. The latter case will be considered in See. 
IV. 

(5) The analysis above has the obvious limitations of any 
linear theory. Nonlinear stability will be analyzed below. 

III. WEAKLY NONLINEAR THEORY FOR LARGE 
VIBRATING FREQUENCY 

According to remark (3) at the end of See. II we assume 
that 

(Ú>1 and aw>\. (3.1) 

A. Asymptotic derivation of an evolution equation for 
the free surface 

According to Eqs. (2.29)-(2.34), in order that all the 
terms inEq. (2.35) be of the same order in the limit (3.1), the 
following rescaled parameters and slow time variable 

É = BL2, C = ao)C~l, 

D = 2a2co2D/[(2 + a2co2C2)L3]~l, i=a2co2t/L4. 
(3.2) 

must be of order unity. Thus we replace the expansions 
(2.19) by 

u = a(úL~1u0(x,y,zJ)euot+ a2coL ~3h.o.h. + ce. 

+ a2(ú2L~3us(x,y,z,i)+ • • •, 

w = acoL ~2w0(x,y,zJ)e'mt+ a2coL ~4h.o.h. + ce. 

+ a2(ú2L~4ws(x,y,z,i)+ • • •, 

p = aüj2po(x,y,zj)e"0t+a2üj2L~2h.0.h. + c.c. 

+ a2co2L~2ps(x,y,zJ)+ • • •, 

f=aL'2fo(x,yJ)ela,t+a2L'4h.0.h. + c.c.+fs(x,yJ)+- ••, 

which are now substituted into the original nonlinear prob-
lem(l.l)-(1.6), to obtain 

V-uo+dwo/dz = 0, iu0=-Vp0, dpoldz = 0, (3.3) 

V-us+dws/dz = 0, 

- Vps + d2Us Idz2 = ( u o • V ) u o + W 0dU0 Idz + C.C., 

dpsldz = 0, (3.4) 

if (x,y) e Cl and fs<z< 1, and 

11,5 = 0, wo = ws = 0 if z = l , (3.5) 

w0 = /'/0 + u 0 -V / , , ws = dfs/di+us-Vfs, 

dus/dz = 0 if z=fs, (3.6) 

Po=fJ2, Ps = (f0+f0)/2 + ÉC-2fs+C-2Kfs if z=fs, 

fs dxdy = 0. 
ñ 

(3.7) 

(3.8) 

Note that viscous terms have been ignored (because they are 
small compared to inertia) in the second equation (3.3). This 
approximation fails in two thin viscous boundary layers, with 
0(&>~1/2) thicknesses, attached to the free surface and the 
upper píate; but the effect of these [which could in principie 
change the boundary conditions (3.5)-(3.7)] is seen to be of 
higher order and thus can be ignored in first approximation 
in both the oscillatory and the nonoscillatory parts of the 
solution Inertia is much smaller in the second equation (3.4), 
where viscous terms cannot be neglected because they are of 
the same order as the convective terms. And, as in See II, 
the effect of the lateral walls is appreciated only in a lateral 
boundary layer, with a 0(1) thickness, near the lateral walls 
where Eqs. (3.3)-(3.7) do not apply. This boundary layer 
(see Appendix A) provides the following boundary condi­
tions for the solution in the bulk 

3fsldn=—Ddfsldt or fs = 0, us-ndz = 0 on <?ft. 
Jo 

(3.9) 

On the other hand, we consider the following overall con-
tinuity equations, which are obtained upon integration of the 
first expressions in Eqs. (3.3) and (3.4) in fs<z< 1 and sub-
stitution of the first two boundary conditions (3.6), 

V- J u0dz\=if0, V- J usdz\=dfs/dt. 

Using these, we may intégrate the remaining equations and 
boundary conditions in Eqs. (3.3)-(3.7) to obtain 

p0=fsll, u0 = /V/,/2, / 0 = ( l - A ) A / , / 2 - | V / J 2 / 2 , 



u, = ( z 2 - 2 A z - l + 2A) [4V^+V( |V/ J 2 ) ] / 8 , 

(3.10) 

¿ A / < 9 / = - V - [ ( l - / J 3 V [ 4 ^ + | V / J 2 ) ] / 1 2 , (3.11) 

ps = ÉC-2fs+[C-2 + (l-fs)/2]Afs-\Vfs\
2/2 in fí, 

(3.12) 
where we have taken into account that (V /^ -V)^ / , 
= V(|V/J2) /2. 

The evolution equation we were looking for is given by 
Eqs. (3.11) and (3.12). Also, invoking Eqs. (3.8), (3.9), and 
(3.10), we have 

dfsldñ=-Ddfsldt or fs = 0, 

Adpsl dn + d{\Vfs\
2)l dn=Q on <?ft, fsdxdy = 0. 

Jñ 
(3.13) 

And for convenience we rescale the time variable and drop 
out the subscript s to rewrite Eqs. (3.11)—(3.13) as 

df/dr=-V-[(l-f)3VU], with 

U=Xf+(\-yf)Af-y\Vf\2/2, in fí, (3.14) 

dfldñ=-pdfldr or / = 0 , dUldñ=Q on <?ft, 

fdxdy = 0. 
ñ 

(3.15) 

where [see also Eqs. (1.13) and (3.2)] 

y=2JB/(2 + C2) = 25Z2/(2 + a2w2C2), 

y=C2/(2 + C2) = a2co2C2/(2 + a2co2C2)<l, 

/3=(2 + C2)D/(6C2)=D/(3C2L3), 

T=(2 + C2)i/(6C2) = (2 + a2co2C2)t/(6C2L4). 

(3.16) 

Equation (3.14) is somewhat similar to the Cahn-Hilliard 
equation. Since 0 < y < l , the problem (3.14) is uniformly 
parabolic and thus has a unique solution satisfying given 
initial conditions [19-21] whenever 

I/I =bounded and f< 1. (3.17) 

Note that the first boundary condition is somewhat nonstand-
ard, but it is dissipative because /?s=0 and thus standard 
results for Dirichlet and Neumann boundary conditions are 
somewhat straightforwardly extended when this condition 
applies. In addition to the solutions satisfying Eq. (3.17) for 
all T > 0 , we could allow / = 1 in a time-dependent closed 
subset K(r)GÜ,, which physically corresponds to a dry spot 
on the upper píate. The associated problem, not considered 

here, would be a free boundary problem and should be com-
pleted with appropriate jump conditions at the boundary of 
K. 

B. Linear stability of the fíat state 

The linear stability of the simplest steady state of Eqs. 
(3.14) and (3.15), / = 0 , is analyzed as usually, by first lin-
earizing around / = 0 and then replacing f(x,y,r) by 
F{x,y)eIXT in the resulting problem, to obtain the linear ei-
genvalue problem 

-AU=pF, AF+XF=U in ft, (3.18) 

dFldñ=-p[3F or F=0, dUldñ=Q on dñ, 

F dxdy = 0. 
ñ 

(3.19) 

which is analyzed in Appendix B. According to Property Bl 
the instability threshold is X = X0 and invoking the first ex-
pression in Eq. (3.16), the main result in Sec. II [namely, Eq. 
(2.40)] is recovered. 

C. Nonflat steady states without dry spots 

The steady states of Eqs. (3.14) and (3.15) that do not 
exhibit dry spots are given by 

( l - y / ) A / + X / - y | V / | 2 / 2 = const, f<\ inO 

dfldn = Q or / = 0 on ¿>íl 

(3.20) 

fdxdy = 0. (3.21) 
a 

As seen in Sec. IIIB above, the flat steady state / = 0 is 
stable if X<X0- Since Eqs. (3.20) and (3.21) are a particular 
case of Eqs. (Cl) and (C2), with 

H(f) = yf, (3.22) 

we may apply the analysis in Appendix C to obtain the fol-
lowing property concerning the local bifurcation of Eqs. 
(3.20) and (3.21) a t \ = 0. 

Property 3.1. For generic domains ft, such that the 
eigenfunctions of Eq. (2.14) associated with X = X0, are such 
that 

F0dxdyj=0. 
ñ 

(3.23) 

the bifurcation is transcritical. And ifíl is either a circle or 
a rectangle, then the bifurcation is subcritical. 

Proof Since H'(0)=y>0, if Eq. (3.23) holds, then the 
constant T2 in Eq. (C12) is nonzero and according to the 
discussion in Appendix C, the bifurcation is transcritical. 
And since H"(0) = 0, Property Cl implies that for circles 
and rectangles the bifurcation is subcritical. 

The following global result gives sufficient conditions for 
nonexistence of nonflat steady states without dry spots. 



Property 3.2. Let X0>0 be the lowest positive eigenvalue of 
Eq. (2.14). Ify<2/3 and X < X 0 ( l - 3 y/2) then Eqs. (3.20) 
and (3.21) only possesses the fíat solution / = 0 . 

Proo/ In order to prove this property, we first note that 
the solutions of Eqs. (3.20) and (3.21) satisfy 

í [(1 - 3 yf/2)\Vf\2-\f]dxdy = 0, (3.24) 
Ja 

as readily obtained upon multiplication of Eq. (3.20) by / 
integration in ñ, integration by parts and substitution of Eq. 
(3.21). And we only need to use the variational definition 
(B10) of X0 to obtain the stated result. 

D. Lyapunov function and large-time behavior 

The problem (3.14) and (3.15) admits a Lyapunov func­
tion that is readily obtained upon multiplication of the first 
equation (3.14) by U, integration in ñ, substitution of the 
second equation (3.14) and of Eq. (3.15), and integration by 
parts, to obtain 

d£ldr=- (l-f)3\VU\2dxdy 
Ja 

-p\ Á\-yf)(dfldr)2ds 
J sa 

or d£/dr=- ( 1 - / ) 3 |V£ / | 2 dxdy, (3.25) 
Ja 

depending on whether the first or the second boundary con-
dition (3.15) applies, where the rescaled energy £ is givenby 

£= í_ [(l-yf)\Vf\2-V2]dxdy/2. 
Ja 

Equation (3.25) and a well-known result on infinite-
dimensional dynamical systems (Ref. [22], p. 50, Lemma 
3.8.2) (whose assumptions are checked in this case by em-
bedding theorems [23] and a priori estimates for elliptic 
[24,25] and parabolic [19] equations) yields the following. 

Property 3.3. Ifa solution ofEqs. (3.14) and (3.15) sat-
isfies Eq. (3.17), uniformly for all T > 0 , then f converges to a 
the set ofsteady states without dry spots as T ^ ° ° . 

As a consequence of this property, each solution of Eqs. 
(3.14) and (3.15) is such that either (i) becomes unbounded 
or develops a dry spot (for finite or infinite time) or (ii) 
converges to the set of steady states without dry spots, con-
sidered above in Secs. IIIB and IIIC. 

IV. TWO IMMISCIBLE LAYERS 

We consider now a closed container of height 2h and 
width / such that h<f, which is filled with two immiscible 
liquids of different densities, with the lighter liquid below 
the heavier one. We use a vibrating Cartesian coordinate 
system with the z = 0 plañe on the unperturbed interface, 
assumed to be horizontal, and employ the viscous time 
h2(p+ + p~)l(p + v+ + p~v~) and the length h for nondi-

mensionalization, where p and v denote the density and ki-
nematic viscosity and the superscripts + and - are used 
hereinafter for the variables pertaining to the liquid above 
and below the interface. The governing equations are now 

V •u± + dw±/dz = 0, (4.1) 

(1 ±m)[du±ldt+ (u* • V)u± + w ±du±ldz] 

= - 2 V / ? ± + ( l ± « ) ( A u ± + <92u±/<9z2), (4.2) 

(1 ±m)[dw±/dt + U± • Vw± + W±dw±/dz] 

= -2dp±/dz+(l±n)(Aw± + d2w±/dz2), (4.3) 

if (x,y)eCl and ±f(x,y,t)<±z<\± S, with boundary 
conditions 

u± = 0, w ± = 0 i f z = ± ( l ± < 5 ) and if (x,y) e<?ft. 
(4.4) 

u = u + , w~-u~-Vf=w + -u+ -Vf=dfldt if z=f. 
(4.5) 

{\+n)(du+ldz + Vw+)-(\-n)(du'ldz + Vw') 

= 0 ( | V u ± | | V / | + (|(9u±/(9z| + |Vw± | ) |V/ | 2) if z=f, 

(4.6) 

p+ —p~ — acú2fcos((út)—BC~2f 

-C-2V-[Vf/(l + \Vf\2)m] 

= 2(1+n)dw+/dz-2(1-n)dw~/dz 

+ 0 ( |Vu ± | + (|<9u±/<9z| + |Vw± |) |V/' |) if z=f, 

(4.7) 

Vf-n=-Ddfldt or / = 0 if (x,y)<=dü,, 

f(x,y,t)dxdy = 0, (4.8) 
Ja 

where u, w, p,f V, V •, A, ft, dCí, and n are as defined in 
Sec. I, with/and L (the dimensionless characteristic size of 
O) satisfying againEqs. (1.8) and (1.9). The positive param-
eters S, m (Atwood number) and n, the effective nondimen-
sional vibration amplitude, a, and the Bond and capillary 
numbers are now 

S=(h + -h-)l(h + + h-), m = (p + -p-)l(p+ + p-), 

n = (p + v+ — p~ v~)l(p + v+ + p~ v~). 

a = (a*lh)(p+-p-)l(p + + p-), (4.9) 

B = (p+-p-)gh2/cr>0, 

and 

C = (p + v+ + p-v-)[(p+ + p-)ah]-m 



where a* is the dimensional vibrating amplitude, h± are the 
unperturbed depths of the liquid layers (such that h + + h~ 
= 2h), p± are the densities, g is the gravitational accelera-
tion, v± are the kinematic viscosities, and <x is the surface 
tensión coefficient. 

In the absence of vibration (if a = 0) the quiescent state is 
linearly unstable due to RT instability, if and only if, Eq. 
(2.13) holds. With vibration, the linear stability analysis is 
completely similar to that in Sec. II and yields the asymptotic 
stability condition 

B<Bc = \0[l + (l-S2)a2co2C2/{2(l-mS)}] 
(4.10) 

where B = BL2 is as defined in Eq. (2.13), X0 is the lowest 
eigenvalue of Eq. (2.14) and, as in Sec. II, we assume that 

Ü)>\. (4.11) 

With the same notation as in Sec. IIB, remark (3), condition 
(4.10) can be written in dimensional form as 

•<K 

X-

(27TO*&>*)2 

h+h-(p+ + p-)2 

(h-p+ + h + p-)(p+-p-) 

Note that as in the case of only one liquid layer and for the 
same reason [remark (3), at the end of Sec. IIB] this condi­
tion is independent of viscosity. 

In the limit (4.11), the analysis of the weakly nonlinear 
dynamics of the system proceeds as in Sec. III. We again 
assume that Eq. (3.1) holds, rescale C, D, and the slow time 
variable as 

C = acoC, D = 2a2co2D/[(2 + a2co2C2)L3], i = a2co2t/L4. 
(4.12) 

where C and D are again assumed of order unity, and seek 
the expansions 

u± = acoL^1Ug(x,y,zJ)euot + a2coL^3h.o.h. + c.c. 

+ a2(ú2L~3uf(x,y,z,i)+ • • •, 

w ± = acoL^2Wg(x,y,zJ)e'mt+ a2coL ~4h.o.h. + ce. 

+ a2co2L~4wf(x,y,zJ) + • • •, 

p± = aco2pg(x, y, zj)e'°"+ a2 &>2X~2h.o.h. + c.c. 

+ a2o¡)2L~2pf (x,y,z,i)+ • • •, 

f=aL-2f0(x,yJ)e'mt+a2L-4h.o.h. + c.c.+fs(x,yJ)+ • ••, 

which are now replaced into the original nonlinear problem 
(4.1)-(4.8), to obtain 

dp„/dz = 0, i(l±m)Ua=-2Vp¿, V-Ua+dw¿/dz = 0. 
(4.13) 

dpf/dz = 0, 

{\±n)d2uf I dz2 = 2V pf + (\±m) 

X [(üj • ^ ) u j + w^du^/dz + c e ] , 

V-uf + dwfldz = Q, (4.14) 

in (x,y) e ft, ±fs<±z< 1 ± S, and 

117 = 0, w¿ = wf = 0 if z=±(l±S), (4.15) 

W o - " o - Y / ; = / / 0 , wf—af-Vfs=dfsldi ifz=fs, 
(4.16) 

u+=u , , (l-n)dus/dz = (l+n)dupdz if z=fs 

(4.17) 

Po ~Po =fJ1-< 

p;-p; = (f0+f0)/2+BC-2fs+C-2Afs if z=fs. 
(4.18) 

And again, the analysis of the lateral boundary layer near the 
lateral wall (see Appendix A) and volume conservation yield 

dfsldñ=-Ddfsldi or fs = 0, 

us • n dz = us • n dz = 0. 

u0 -adz+ \ u0 •adz = Q on díl. 
-(!-<?) Jfs 

__fs dxdy = 0. 
a 

(4.19) 

As in Sec. III A, the following overall continuity equa-
tions in the lower and upper layers are useful 

V- J u-dz\=if0, V- J u-dz\=dfs/dt, 

(4.20) 

which follow upon integration of the last expressions in Eqs. 
(4.13) and (4.14) in ± (1 ± 8)<±z< ±fs and substitution of 
Eq. (4.16). Using the first of these, the oscillatory problem, 
posedby Eq. (4.13), with boundary conditions (4.15), (4.16), 
(4.18), and (4.19), is readily integrated to obtain 

P>(go±L)l^ u0 = 2i(l±m)-'Vp¿, (4.21) 

f0 = (l+m)-lV-.[(1 + S-fs)V(g0+fs)l2l (4.22) 

where g0 is uniquely given by 



V-[(l+mfs-mS)Vg0 + (S-fs-m)Vfs] = 0 in í l , V [ ^ ; + 2 ( l + / w ) _ 1 | V ^ ; | 2 ] - ñ = 0 on dü, 

[(l+mfs-mS)Vg0 + (S-fs-m)Vfs]-ñ=0 on XI. 

Here the expression between brackets exactly coincides with 
/ * _ g)a^dz + S\+s»o dz. This linear problem is readily 
solved to obtain 

g0(x,y,i) = G0(fs(x,y,i)), with 

G0(fs)= ífs[(í+m-S)/(l+m£-mS)]dl (4.23) 
Jo 

In order to avoid too involved expressions, we do not 
consider the most general valúes of the parameters in the 
sequel, but only two limiting cases that bear the main ingre-
dients of the general case. These two cases are that in which 
the viscosities of the liquids are disparate [i.e., n= 1 or 
- 1, see Eq. (4.9)] and that in which the viscosities, densities 
and unperturbed depths of both layers are approximately the 
same. 

A. Disparate viscosities but arbitrary Atwood number and 
unperturbed depths 

Without loss of generality we assume that 

p+v+>p v (4.24) 

Then n=\ and using Eqs. (4.14)-(4.20), the nonoscillatory 
flow is readily obtained to be 

- 1 | T 7 „ - | 2 
P; = -2(l-myl\Vp-0 

pt=-2{l-m)-l\Vp-\2+f0 + BC-2fs+C-2Kfs, 
(4.25) 

u ; = [V^ + + 2( l+m)- 1 V(|V^ 0
+ | 2 ) ] 

X[{z-fs)
2-{l + S-fs)

2]l2, 

dfsldt=-V-((,\ + S-f^V[p+ + 2(\+m)-l\Vp+
0\

2])l3; 
(4.26) 

where we have taken into account the vector identity 
(Vp* • V)Vpo = V(IVpg\2)/2. Thus fs evolves according 
to the parabolic equation (4.26) where, according to Eqs. 
(4.21),(4.22) and (4.25),/?+ + 2 ( l+ /wr 1 |V /? + |2 isgivenby 

2 / ? ; + 4 ( 1 + / H ) - 1 | ' V > 0
+ | 2 

= -(l-m)-l\V(g0-fs)/2\2 + (l+m)-l\ 

XV(g0+A)/2|2 + ( l + m ) - 1 V - [ ( l + < 5- / J 

XV(g0+fs)] + 2ÉC-2fs + 2C-2Afs, (4.27) 

with g0 as given by Eq. (4.23). In addition, we have 

dfsldñ=-Ddfsldt or fs = 0, 

fsdxdy = 0. 
ñ 

(4.28) 

which result from Eq. (4.19) when taking into account that 

u,+ dz=-[Vpt + 2(\+m)-lV(\Vp+
0\

2)} 

X(l + S-fs)
3/3. 

As in Sec. III, we rescale i and drop out the subscript s to 
rewrite Eqs. (4.26)-(4.28), after some algebra, as 

dfldr= -V-[(l + S-f)3VU], with 

U=\f+[\-H{J)]Kf-H'{J)\VJ\2l2, infí, 
(4.29) 

dfldn = -pdfldr or / = 0 , dUldn = 0 on ¿>íl 

J~dxdy = 0. 
íi 

(4.30) 

where the function H is defined as 

2 + C 2 [ l - (<5- / ) 2 ] / [ l+ ,w(/ -<5)] 
H{f)=l-

2 + C2(l-82)l(l-m8) 
(4.31) 

and the parameters X and /? and the time variable r are given 
by 

25 

2 + C2(l-<52)/(l-/w<5) 

2BL2 

2 + a2co2C2(l-S2)/(l-mS)' 

(2 + C2)D D (2 + C2)i (2 + a2co2C2)t 
B= = — , r= 

6C¿ 3C¿L 
2T3 6C¿ 6L"C 4 ^ 2 

Note that H(0) = 0 and that 1 -H(f)>0 if 

-(1-S)<f<l + S, 

(4.32) 

(4.33) 

that is, if the interface does not touch the lower and upper 
boundaries of the container. In this case, the problem (4.29) 
and (4.30) is uniformly parabolic and possesses a unique 
solution 

If p~ = 0 then the effect of the lighter liquid disappears 
and we must recover the results in Sec. III. And this is trae 
because if m = S=l (we are also requiring h + = h~ because 
of the nondimensionalization above) then Eqs. (4.29)-(4.31) 
coincide with Eqs. (3.14) and (3.15). On the other hand, 
assumption (4.24) means that the inviscid liquid is the lighter 



one, namely that placed below. The opposite case is ob-
tained, still under assumption (4.24), by changing the direc-
tion of gravity and interchanging the lower and upper liq-
uids, which means according to Eq. (4.9), to change the signs 
of m and n. Thus both possibilities are included in Eqs. 
(4.29) and (4.30) by just allowing m to vary between - 1 and 
1. 

The analysis in Secs. IIIB-IIID is readily extended to 
Eqs. (4.29) and (4.30). In particular, 

(1) If, in order to analyze the linear stability of the flat 
steady s ta te /=0, we linearize Eqs. (4.29) and (4.30) around 
/ = 0 and replace f(x,y,r) by F(x,y)e^T in the resulting 
problem, then we obtain again the linear eigenvalue problem 
(3.18)-(3.19). Thus the instability threshold is again X = X0, 
which according to Eq. (4.32) yields the following threshold 
valué of the Bond number 

BL2<Éc = X0[l + (l-S2)a2co2C2/{2(l-mS)}]. 

Thus the threshold valué (4.10) is recovered. 
(2) As in Sec. IIIC, the bifurcation from the flat state at 

X. = X0 is transcritical for generic cross-sections, such that 
Eq. (3.23) holds. And since, according to Eq. (4.31), 

2(l-m2)a2co2C2 

H"(0)= >0 . 
(1 -mS)2[2( 1 -mS) + a2co2C2( 1 - S2)] 

Property Cl, in Appendix C, implies that bifurcation is sub-
critical if the cross section is either a circle or a rectangle. 

(3) As in Sec. III A, a rescaled overall mechanical energy 
equation is obtained upon multiplication of Eq. (4.29) by U. 
integration in ñ, substitution of Eqs. (4.29) and (4.30), and 
integration by parts, as 

d£/dr=- (l-f)3\VU\2dxdy 
Ja 

-P¡ _[l-H(J)](df/dT)2ds (4.34) 
Jan 

or d£/dr=- (l-f)3\VU\2 dxdy. 
Ja 

depending on whether the first or the second boundary con-
dition (4.30) applies, where the rescaled energy £ is givenby 

£= í J[l-H(f)]\Vf\2-Xf2)dxdy/2. (4.35) 
Ja 

Thus the problem (4.29) and (4.30) admits a Lyapunov func-
tion and, proceeding as in Sec. IIID, we conclude that the 
solutions that satisfy Eq. (4.33) uniformly in 0 < T < ° ° con­
verge to the set of steady states that satisfy Eq. (4.33). 

B. Zero Atwood number and equal viscosities 
and unperturbed depths 

Now we take 

m = n = S=0. 

Then Eq. (4.23) yields G(£) = £2/2 and the expressions 
(4.21) and (4.22) for p¿ and/ 0 reduce to 

Po =fii*±fJ*, fo = V • [(1 -fitffAl 

And we only need to use Eqs. (4.14)-(4.20) to obtain the 
nonoscillatory flow as 

+ ( z - / , ) 2 ? ( g i ± G i ) 
u* = 4 

(z-fs)[-2fóVg1 + (l+f2)VG1] 

4 

q - / 2 x v g i - A V G i ) 
4 

pf = (g1±G1)/4-2\Vp;\2, dfsldÍ=V-Mf, 
(4.36) 

where G1 and V~ = - J + ^u~ dz are given by 

Gl=2ÉC-2fs+2C-2Afs+fs\Vfs\
2 + V-[(l-f2)Vfsl 

± = ( ± l - A ) 3 V ( g i ± G i ) 
12 

( ± i - A ) 2 [ - 2 A V g 1 + ( i + ^ ) V G 1 ] 
8 

( l - / 2 ) ( ± l - A ) ( V g 1 - A V G 1 ) 

In addition, according to Eq. (4.19) we have the following 
boundary conditions 

dfsldñ=-Ddfsldi or fs = 0, U f - ñ = 0 on dñ, 

¡Jsdxdy = 0, (4.38) 
Ja 

and using Eq. (4.37) the boundary conditions Üf -n=0 are 
seen to be equivalent to 

dglldñ=dGlldñ=Q on dñ. (4.39) 

On the other hand, according to Eq. (4.36), we have 
V - ( U + - U ; ) = 0; using Eqs. (4.20), (4.37), and (4.39) we 
obtain after some algebra 

2 A g 1 = V - [ ( 3 A - ^ ) V G 1 ] in í l , 2dgl/dñ=0 on dñ. 

This equation uniquely provides gj (up to an additive con-
stant) in terms of fs as 

g1 = -g(V-[(3fs-fs)VG1])/2, (4.40) 



where Q is the Green (integral) operator of - A in ft, with 
homogeneous Neumann boundary conditions, defined by Eq. 
(B4) [where U=G(F)] in Appendix B. Substitution of Eq. 
(4.40) into Eq. (4.37) yields, after some algebra. 

- [ ( l - / ' ) / 8 ] V A - V [ g { ( V - [ ( 3 A - ^ ) V G 1 ] } ] 

[ ( l - / ' ) ( 3 A - ^ ) / 8 ] V A - V G 1 : (4.41) 

where we have taken into account that A(Qlf)=fby defini-
tion of Q. And fs is given by the parabolic (integro-
differential) equation defined by the second equation in Eqs. 
(4.36) and (4.41), with the boundary conditions (4.38) and 
(4.39) and appropriate initial conditions. For convenience, 
this problem is rescaled as 

¿>f/dT=-V-[(l-f2)3VU]/4-[3(l-f)/4] 

V/-V[g(V- [ (3 / - / 3 )V£/ ] ) ] 

-3(l-f2)(3f-f)Vf-VU/4 

with 

U= X/+ (1 - yf) Af- yf\ V/ |2 , (4.42) 

dfldñ=-pdfldr or / = 0 , dUldñ=Q on dCÍ, 

fdxdy = Q, (4.43) 
ñ 

where we have dropped out the subscript s from fs and the 
parameters y, B, and X, and the rescaled time variable r are 
defined as [see also Eqs. (4.10) and (4.12)] 

\ = 2É/(2 + C2) = 2BL2/(2 + a2co2C2), 

y=C2/(2 + C2) = a2oj2C2/(2 + a2co2C2)<l, 

B=(2 + C2)D/(6C2)=D/(3C2L3), 

T=(2 + C2)i/(6C2) = (2 + a2co2C2)t/(6L4C2). 
(4.44) 

The analysis in Secs. IIIB-D and some of the results 
there are extended to Eqs. (4.42) and (4.43). The following 
comments are in order. 

(A) If, in order to analyze the linear stability of the fíat 
steady s ta te /=0, we hnearize Eqs. (4.42) and (4.43) around 
/ = 0 and replace f(x,y,r) by F(x,y)e^T in the resulting 
problem, then we obtain again the linear eigenvalue problem 
(3.18) and (3.19). Thus the instability threshold is again X 
= X0, which according to Eq. (4.44) yields the following 
threshold valué of the Bond number 

BL2<BC = X0( 1 + a2o)2C2l2). 

Thus we recover Eq. (4.10). 

(4.45) 

(B) When analyzing the bifurcation from the fíat state at 
X = X0 we may take df/dr=0, £/=const in Eqs. (4.42) and 
(4.43), to obtain the problem (Cl) and (C2) considered in 
Appendix C, with 

,f2 H(f) = yf (4.46) 

Thus the bifurcation is transcritical for generic cross sec-
tions, such that Eq. (3.23) holds. And since, according to Eq. 
(4.46), 

H'(0) = 0 and H"(0) = 2y>0, 

Property Cl, in Appendix C, implies that bifurcation is sub-
critical for both circles and rectangles. 

(C) As in Sec. III A, we may try to find a Lyapunov func-
tion, but a similar procedure does not seem to give satisfac-
tory results now. Thus we are unable to prove convergence 
to the set of the steady states. 

V. CONCLUSIONS 

We have considered in Secs. II and III, the combined 
effects of vertical vibration and gravity in a large aspect ratio 
container in inverted position, namely, with gravity acting 
downwards. The linear stability of the fíat, rigid body oscil-
latory state was considered in Sec. II, where we obtained the 
instability thresholds for both short-wave and long-wave per-
turbations. The latter analysis was based on a standard long-
wave approximation (small horizontal gradients of the vari­
ables) that applies in the bulk, outside a boundary layer near 
the lateral wall, which was analyzed in Appendix A to obtain 
the appropriate boundary conditions for the solution in the 
bulk. The resulting 2D linear eigenvalue problem was (of 
fourth order and thus) somewhat nonstandard and of inde-
pendent interest; it was analyzed in Appendix B. The mar­
ginal instability curves associated with short- and long-wave 
perturbations gave a nonvoid stability región in the param-
eter space (Figs. 2-4) similar to the one already found ex-
perimentally in Ref [9]. In particular, we have shown that 
the stabilizing effect of vibration is similar to that of the 
surface tensión, and more and more effective as the forcing 
frequency increases. Thus the forcing frequency has been 
assumed to be appropriately large (namely, the forcing pe-
riod small as compared to the viscous time) in the remaining 
part of the paper. 

A weakly nonlinear, long wave approximation has been 
made in Sec. III, where an evolution equation for the free 
surface in the absence of dry spots was obtained that applies 
below the upper instability curve in Fig. 2 (and outside a 
neighborhood of this curve); the latter condition implies that 
short-wave perturbations are damped out exponentially and 
can be ignored. This equation admits a Lyapunov function 
that assures convergence to the set of the steady states. In 
addition, we analyzed local bifurcation near the instability 
threshold and showed that this is transcritical for generic 
containers, and subcritical for some reflection symmetric 
(such as circular and rectangular) cross sections. The numeri-
cal integration of this evolution equation, to obtain further 
properties of the associated dynamics, is outside the scope of 



this paper; their interest would be considerable if a compari-
son with experiments were possible. But to our knowledge 
(and surprisingly to some extend) no further experiments, in 
addition to those by Wolf [8,9] are available in the literature. 

The analysis in Secs. II and III was extended in Sec. IV to 
the case of a heavy fluid layer over an immiscible lighter 
one. The instability threshold was obtained under general 
assumptions, but for simplicity the evolution equation ac-
counting for weakly nonlinear dynamics was made only in 
two limiting cases, namely, (a) when the viscosity of one of 
the liquids is negligible and (b) when both viscosities and 
densities are almost equal. The evolution equation was quite 
similar (and exhibited similar properties) to that of a single 
layer in case (a), but it was somewhat different (e.g., it was 
nonlocal) in case (b). 

For illustration we have considered in Sec. IIB, a realistic 
example (an inverted container 5 cm wide filled with mineral 
oil) in which the RT instability produced by the earth gravity 
can be counterbalanced by a 102 Hz vertical vibration of the 
container. The required vibrating frequency is much smaller 
if either the container is smaller or microgravity conditions 
are considered. Similar applications could be made for the 
two fluid layers case considered in Sec. IV, but they have 
been omitted because there are no experiments in the litera-
ture to compare with. These would be of great interest once 
the [fairly simple, as compared to the original problem 
(1.1)—(1.7)] theory in this paper is available. 
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APPENDIX A: THE BOUNDARY LAYERS ATTACHED TO 
THE SIDE WALLS 

For the sake of brevity and clarity, these boundary layers 
are analyzed in detail only in the basic limit considered in 
Sec. IIB. The analysis in the remaining limits is completely 
similar as will be remarked at the end of this appendix. The 
structure of this boundary layer is somewhat nonstandard 
because, as it can be anticipated from Eqs. (2.26) and (2.30), 
the normal component of the oscillatory velocity at the edge 
of this boundary layer is non-zero at leading order. This re-
quires that the oscillatory velocity remains of the same order 
in the boundary layer as in the bulk and, consequently, the 
oscillatory pressure and free surface deflection are much 
larger in the boundary layer (where the oscillatory velocity is 
not almost horizontal, as it is in the bulk) than in the bulk. 
Thus we seek the expansions [cf Eq. (2.19)] 

u=L~luo0e
imt+L~2h.o.h. + c.c. + L~4us0 + •••, 

v=L'lvo0e
imt+L'2h.o.h. + c.c. + L'3vs0+- ••, 

w = L~lw o0e
ia"' + Z~2h.o.h. + ce. + L~4w s0+ ••-. 

(Al) 

p = [Po0 + L l
Poly

at+L 2h.o.h. + c.c. + Z lps0 + L 2
Ps, 

+ L-3ps2+---, 

f=L-'fo0e"at+L-3h.o.h. + c.c.+fs0 + L-'fs,+ ---, 

where 

rj = slL, (A2) 

£, and s are coordinates along the outward unit normal to dQ, 
and along Sil, respectively, and u and v denote the associ-
ated components of the horizontal velocity u. Here fOJ and 
fSj are allowed to depend only on £, 77 and 7 [defined by Eq. 
(2.18), as in Sec. IIB], and uoj, w •, vOJ-, vZJ-, wOJ-, w •, p0¡ 

and pSJ are allowed to also depend onz. Substitution of these 
expansions into Eqs. (2.1)-(2.5) yields 

Po0% = Po0z=Ps0% = Ps0z=Ps0 7¡ = Ps\Z = Ps\z=Ps\7¡=Qi 
(A3) 

Mo0f+ M ;o0z = 0; Uo0{{+uo0zz~Po\{~í(ÚUo0 

= woOÍÍ+wo0zz-polz-icúwo0 = 0 (A4) 

if - o o < £ < 0 and 0 < z < 1, with boundary conditions 

uo0 = wo0 = 0, if z=\ orif £=0, (A5) 

wo0-icofo0 = uo0z + wo0^=0 ifz = 0, (A6) 

pol-aco2fsl/2+C-2fo0^+2wo0=0 ifz = 0, (A7) 

po0-aco fs0/2=fs0{{ 

= -ps0 + aco2(fo0+fo0)/2+C'2fsl^ 

= 0 if z = 0, (A8) 

/Oo = 0, fsoz=fsiz+Dofs07=Oorfs0 = 0, if ^=0, 
(A9) 

where 

D0 = D/L3. 

The problems giving vo0 and (us0 ,vs0 ,wso) a r e decoupled 
and need not be considered. Using Eqs. (A3), (A8), and (A9) 
we obtain 

Po0=Po0ÍV,'t), PsO=Pso(t), fsO=fso(V,t), 

where 

f,o = 0, 

if the second boundary condition (2.5) applies; in this case, 
we only need to apply matching conditions with the solution 
in the bulk to obtain the Dirichlet boundary condition in Eq. 
(2.26). 

If instead the first boundary condition (2.5) applies then 
we obtain Eq. (2.27) as follows. The oscillatory velocity 
components uo0 and wo0 are given by Eqs. (A4)-(A7) and 



the following matching conditions with the solution in the 
bulk [compare Eq. (2.19) withEq. (Al) and use Eq. (2.30)], 

uo0 — i(aa)/2)[l -(cosh JJw)_1 cosh^[i~wz]fsl^0, 

f0o^0 and wo0^0 as £ ^ - ° ° . 

Using this and Eq. (A6) in the equation that results when the 
continuity equation in Eq. (A4) is integrated in - ° ° < £ < 0 , 
0 < z < l , we obtain 

o a [ 
foodt+^\ 1 

sinh Jio) 

ico cosh y/ico/ ¿¡ 
lim fsH=0. 

(A10) 

On the other hand, matching conditions with the solution in 
the bulk require that/ i ^ be bounded as £—• - ° ° , which in-
voking Eq. (A3) and the last expression in (A8) yields 

Thus we only need to intégrate the last equation in Eq. (A8) 
and use Eq. (A9) to obtain 

lim fsH=-DJs0l+{aC2oj,2l2) 
¿—> — CC 

(foo+foo)d£, 
z 

(All) 

and invoking Eq. (A10) we obtain 

lim fsi{= ~Dfs07, 
¿—> — CC 

where D = 2D0/[2 + a2co2C2</>(&>)], with the function <f> as 
defined in Eq. (2.28). And we only need to apply matching 
conditions with the solution in the bulk to obtain the Neu-
mann boundary condition in Eq. (2.26). 

The analysis above stands as &>^°° and as a weak non-
linearity (as that in Sec. III) is included; thus the boundary 
conditions (3.9) follows. And the analysis is straightfor-
wardly extended when a lower liquid layer is added, as in 
Sec. IV, to obtain the boundary conditions (4.19). 

APPENDIX B: LINEAR STABILITY OF THE FLAT STATE 

The stability of the flat state fs = 0 of Eqs. (2.35) and 
(2.36) is analyzed as usually, by replacing/, by F{x,y)eIJ't 

to obtain the linear eigenvalue problem 

-Ku=/iF, AF+\F=U in ft, (Bl) 

dFldñ=-lx[3F or F=0, dUldñ=Q on dñ, 

where 

F dxdy = 0. 
ñ 

\ = 2BL2/[2 + a2co2(f>(co)C2] 

(B2) 

/x = 6C2L4/x/[2 + a2co2(f>(co)C2], f3 = DI(6C2Li). 

If the second equation in Eq. (Bl) is substituted into the first 
one then we obtain a fourth order, linear eigenvalue problem. 
But instead, for convenience, we consider the linear problem 
posed by the first equation in Eq. (B1) and the second bound­
ary condition in Eq. (B2), which uniquely provides U in 
terms of F, in the form 

U= iiQ(F) + const, (B3) 

where Q is the Green operator associated with the problem 

-AU=F in í l , dUldn = Q on díl. U dxdy = 0. 
a 

(B4) 

defined as G(F) = U. Note that Q is a self-adjoint, compact 
operator inX= {FeL2(ñ): j¡¡Fdxdy = 0}. Also Q is posi­
tive, namely, J^FG(F)dxdy^0. In fact, 

Fg(F)dxdy>k0 \F\2dxdy. 
ñ Jñ 

(B5) 

where k0>0 is the lowest eigenvalue of Q; or, equivalently, 
UQ l > 0 is the lowest, strictiy positive eigenvalue of - A in 
O, with Neumann boundary conditions at dñ. 

Now, replacing Eq. (B3) into the second equation in Eq. 
(B1) and using Eq. (B2) we rewrite Eqs. (B1) and (B2) as 

KF+ \F=/itgF+ const in ft, 

dFldñ=-lx[3F oxF=Q on dñ, 

F dxdy = 0. 
ñ 

(B6) 

Thus /UL can be also calculated as a generalized eigenvalue of 
this problem. Since Q is compact, self-adjoint and satisfies 
Eq. (B5), the spectrum of this problem is readily seen to be 
real, discrete and bounded above [26]. And using standard 
variational arguments [26,27], the largest eigenvalue of this 
problem is found to be given by 

[\VF\2-XF2]dxdy 
Jñ 

- fi0= min 
FeY I Fg(F)dxdy + (3 F1 ds 

ñ J dñ 

with 

Yx = \FtEH\Q,): Fdxdy=0 
ñ 

(B7) 

if the first boundary condition in Eq. (B6) holds, where s is 
an arch length parameter along dñ and Hl(ñ) is the Sobo-
lev space of those functions that, together with their first 
partial derivatives, are square integrable in ñ. And 

016318-14 
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i [\VF\2-XF2]dxdy 
Jñ 

- /J,0= min-
F e T , 

with 
FQ(F)dxdy 

ñ 

Y2 = \F<=H1((1): ¡Fdxdy = 0, F=0 on <?ft 

(B8) 

if the second boundary condition in Eq. (B6) holds. Note that 
because /?s=0 and Eq. (B5) holds, the ñinctionals that are 
minimized in Eqs. (B7) and (B8) are bounded and continu-
ous (in fact, analytic). Since, in addition (a) ¡x = 0 is an ei-
genvalue of Eq. (B6) if and only if 

AF+XF=constin ft, dF/dñ=0 or F=0 on dñ. 

Fdxdy = 0 
ñ 

(B9) 

has a nontrivial solution, and (b) the lowest eigenvalue of 
this problem is given by 

\VF\2dxdy \VF\2dxdy 
Jñ Jñ 

X0= min-
FEY 

or Xn = min-
I F¿dxdy 
ñ 

FEY 2 I F¿dxdy 
ñ 

(BIO) 

depending on whether Eq. (B7) or (B8) applies, we obtain 
the following property, which is the object of this appendix. 

Property Bl. IfX<X0 then all eigenvalues of Eqs. (Bl) 
and (B2) are strictly negative, and ifX>X0 then Eqs. (Bl) 
and (B2) possesses a strictly positive eigenvalue. 

Proof. The first assertion follows from Eqs. (B5), (B7) 
and (B8), and (BIO). And the second assertion follows from 
the first one because, according to the characterization (B7)-
(B8), ¡JÍQ (i) depends continuously on X and (ii) strictly ul­
ereases as X increases. 

(B9). Let us consider a simple eigenvalue of this linear prob­
lem, X0. Local bifurcation of Eqs. (3.3) and (3.4) atX = X0 is 
readily analyzed by the Lyapunov-Schmidt method [28] as 
follows. Let us replace Eqs. (Cl) and (C2) by 

[ l - ^ ( / ) ] A / + X / - ^ ' ( / ) | V / | 2 / 2 = cons t+r ( e , s )F 0 ! 

with f=s(F0+<p) and X = X0 + e, infí, (C4) 

dfldn = Q or / = 0 on dü,. 

J~dxdy= if/F0dxdy = 0. 
a Jñ 

(C5) 

where F0 is an eigenfunction of (B9) associated with the 
eigenvalue X0, such that 

F\dxdy=\. (C6) 
a 

This problem coincides with Eqs. (Cl) and (C2) if 

r ( e , s ) = 0; (Cl) 

thus this equation is called bifurcation equation. Now, the 
extensión of the implicit function theorem to Banach spaces 
[29], applied in an appropriate function space [e.g., the space 
H2

B(ñ) of those functions that together with their first and 

second spatial derivatives are inZ 2 (^ ) and satisfy Eq. (C5)], 
implies that Eqs. (C4) and (C5) uniquely provides i// and T, 
as C°° functions of e and s, for all sufficiently small e and s, 
and that i//=0 and T = 0 if s = 0. Then those functions can 
be written, through a Taylor expansión, as 

t¡/='i(si¡/l+'H¡/2 + 'i2l¡/3+ • ••), 

r = s ( e r 1 + s r 2 + s 2 r 3 + - - - ) , (C8) 

APPENDIX C: LOCAL BIFURCATION FROM THE FLAT 
STATE AT THE INSTABILITY THRESHOLD 

Here we consider the general problem 

[ l - t f ( / ) ] A / + X / - / r ( / ) | V / | 2 / 2 = const, in fí, 
(Cl) 

3fldn = Q or / = 0 on <?ft, fdxdy = 0, (C2) 
iñ 

where H is a C°° function such that 

H(0) = 0. (C3) 

For appropriate H this problem includes as particular cases 
those providing the steady states of Eqs. (3.14) and (3.15), 
(4.29) and (4.30), and (4.42) and (4.43). The linearization of 
Eqs. (Cl) and (C2) around the solution / = 0 leads to Eq. 

and substitution of these into Eqs. (C4) and (C5) yields 

A(Ai + X0'Ai = ( r i - l ) i r o + const, (C9) 

A(A2 + Xo<A2 = r 2Fo + ̂ ' (0) ( |VF 0 | 2 /2 + FoAFo) + const, 
(CIO) 

^ , + X^ = T,F0 + H'(0)(Vih-VF0 + F0^2+i^F0) 

H"(0)(FlAF0 + F0\VF0\
2)/2 

constin í l . 

di¡/1/dn = di¡/2/dn = dt¡/3/dn = 0 or 

tpl = <p2=<p3 = () on dCí, 

( d i ) 
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FIG. 5. The constants appearing in Eq. (C18) when ü, is the 
square of sides 1 and d. The attachment mode of the contact line 
(free or fixed) is indicated. 

if/\dxdy= F0if/\dxdy= if/2dxdy 
a Ja Ja 

= ij/2F0dxdy= ij/3dxdy 
la Ja 

if/3F0dxdy = 0. 
a 

These three nonhomogeneous, singular linear problems are 
readily seen to be associated with self-adjoint operators, and 
they have a solution if and only if the right hand sides of the 
three equations in Eqs. (C9)-(C11) are orthogonal to F0, 
with the inner product of L2(ñ). This solvability condition 
yields 

r, = i. 

T2=-H'(0)\_ F0(\VF0\
2/2 + F0AF0)dxdy 

la 

= 3H'(0)X0 F5
0dxdy/4. 

la 
(C12) 

3 - _ F0[H'(0)(V^2-VF0 + F0A^2+^2AF0) 
la 

H"(0)(FlAF0 + F0\VF0\
2)/2]dxdy, (C13) 

where we have taken into account Eq. (B9) and the expres-
sion 

í.0 i F0dxdy= — F0AF0dxdy 
la Ja 

_(VF0)-[V(F¿
0)]dxdy 

a 

= 2 F0\VF0\
2dxdy. 

Ja 

which follows from Eq. (B9) upon integration by parts. Thus 
r 2 is generically (for domains of arbitrary shape) nonzero 
and, according to Eq. (C8), the bifurcation is generically 
transcritical. But for some symmetric domains, like the 
circles and rectangles considered in Sec. II, if X0 is the low-
est eigenvalue of Eq. (B9), theni^g is antisymmetric and T2 

vanishes. In this case, i//2 is uniquely given by 

t//2 = H'(0)^, (CU) 

where ^ is the unique solution of 

Ay + \0y=\VF0\
2/2+F0AF0 + const inft, (C15) 

d^/dñ=0 or ^ = 0 on dñ, 
(C16) 

^ dxdy= fF0dxdy = 0. 
a Ja 

And invoking Eq. (C13) we obtain 

r3=[tf'(o)]2r31+tf"(o)r32/2, 

where the constants T31 and T32 are given by 

(C17) 

r 3 i = F0(W-VF0 + F0Ay + yAF0)dxdy 
la 

T32= L F0(F
2AF0 + F0\VF0\

2)dxdy/2 (C18) 
Ja 

and depend only on the domain ñ and on the boundary 
attachment mode of the contact line, namely, on which 
boundary condition is used in Eq. (3.7). In particular, if O 
= CÍ1 is the circle of diameter 1, then 

T31-11.42 and T32-14.78 

for free contact line, and 

r 3 1 -4 .20 and T32-3.79 

(C19) 

(C20) 

for fixed contact line, as obtained from Eq. (C13), where F0 

is to be taken from Eqs. (2.16) and (2.17) [and rescaled to 



satisfy Eq. (C6)] and t//2 is obtained numerically from Eqs. 
(C14)-(C16). Similarly, if ñ = ñ2 is the square of sides 1 
and d^ 1 then these two constants are found to be as plotted 
vs d in Fig. 5. 

Now, according to Eqs. (C19) and (C20) and Fig. 5, the 
constants T31 and r 3 2 are strictly positive inboth cheles and 
rectangles, for both free and fixed contact lines. And using 
(C17), r 3 > 0 in all these cases if /f"(0)s=0. And, according 
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