Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers
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We consider a horizontal heavy fluid layer supported by a light, immiseible enc in a wide (as compared to
depth) container. which is vertically vibrated intending to counterbalance the Rayleigh-Taylor instability of the
flat, rigid-body vibrating statc. In the simplest case when the density and viscosity of the lighter fluid are small
compared (o Ltheir counterparls in the heavier (luid, we apply a long wave, weakly nonlinear analysis that yvields
a generalized Cahn-Hilliard equation lor the evolution of the (luid interlace. This equalion shows thal the

slabilizing ellect of vibration is like that ol surlace tension, and is used (o analvze the linear slability of the (lal
glate, (he local bilurcation al the inslability threshold and some global exislence and stability properlies
concerning the sleady slales withoul dry spols. The analysis is extended o (wo cases ol practical inlerest.
Namely, {a) lhe viscosily ol ene of the [luids is much smaller than Lhal of the other one, and (b) the densilies
and viscosities of both fluids are quite close to each other.
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L INTRODUCTION AND FORMULATION

This paper deals with the Rayleigh-Taylor (RT) instability
[1,2] (sec also [3.4] and rclerences therein), which appears
when a light fluid is accelerated toward a denser one. Thus
this instability plays a role in accelerated fronts, which are of
interest in, e.g., combustion [5], plasma physics [6], and as-
trophysics [7]. The analysis of RT instabilities in technologi-
cal applications such as inertial confinement fusion [6] en-
counters considerable difficulties because this instability
often exhibits a transient nature and/or comes into play in
nonstatic conditions, involving convection, heat flow, mass
ablation, and inhomogeneities, which affect the instability
growlh ralc, In order to avoid these and deal with a clean
fonnmulation, amcnable 1o analylical treatment, we consider
the simplest conliguration cxhibiting this instabilily, namely,
that in which a horizontal hcavy Muid layer is supporied by a
lighter Muid, the destabilizing acceleration being provided by
gravity. In this configuration, the instability can be counter-
balanced by an imposed vertical vibration of the container.
as already shown experimentally [8.9]:. see also [9-11] fora
first theoretical explanation. The main object of this paper is
to provide a weakly nonlinear theory of this stabilizing effect
in the limiting case when both the aspect ratio of the con-
tainer and the vibrating frequency are appropriately large.
Let us mention here that to our knowledge no consistently
simplified evolution equations like the ones derived below.,
accounting for both nonlinearity and viscous effects, are
found in the literature for the evolution of the RT instability
in the presence of vibration; and similar cvolution cqualions
in nonvibrating sysicms arc ol limited scope [4].

Although wc shall dcal with a more gencral siluation in
See, 1V, in order 1o illusirale both the analysis and the rc-
sulls, we first consider in Sces. 11 and [ the limiting casc in
which the lighter fluid can be ignored, which is justified
when its density and viscosity are small compared to their
counlcrparts, p and v, in the heavier (luid, Thus we consider
a wide cylindrical container of horizontal sizc 4 and depth
h<#, which is vertically vibrated and placed in inverted
position (see Fig. 1), with pravity acting downwards. We use

PACS number(s): 47.20.Ma. 47.20.Ky

the depth # and the viscous time /#°/ v as characteristic length
and time for nondimensionalization and a Cartesian coordi-
nate system attached to the container, with the z — 0 plane on
the unperturbed free surface, assumed to be horizontal. The
{nondimensional} governing equations are
V.ou+ dw/dz—1, {1.1}

Vp | Aul d*ufaz?,
{1.2)

an/at | {w-Viul won/dz=

awlot+u-Vw+waw/dz —— dploz+Aw+ 3 wiaz?,
(1.3}

if (x.v)ed) and f(x p.1)<<z<C1, with boundary conditions
u—0 w0 if z—1 and if {x.v)e ), (1.4}
w—dffdt+u-VJ,
aw/az | Vw=0( V||V 1 (Jansaz| 1 |Vw VA
if z—f. (1.5)
p—aw’feos(wt)—BC *f—C *V-[Vf(1+|VA)'"]
—2aw/dz + O(|Vu|+ {|aufoz| + |Vw|)|V ]} il z—/,
(1.6)

Vi n= Ddfiar or f=0 if (xy}edll,

f Sy ) dxdy—0,
0

(1.7}

h_] a* cos{2ru )

FIG. 1. Sketeh of the side view of the container.
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FIG. 2. A typical linear stability diagram ol the static sleady
slale {1.11}. The regions where this [lal slale is stable (S} and un-
stable (I7) arc indicated.

where w and w are the horizontal and vertical velocity, p
=pressure | [aw’cos(wf) | B/C?]z is a modified pressure and
f1s the vertical free-surface deflection. assumed along the
paper (o be such thal

[V 7l=111.

V., V-, and A arc (he horizonlal gradicnl, divergence, and
Laplacian opcrators, €2 is the transversal cross scelion ol (he
container, 4{} is its boundary, and n is the {horizontal) out-
ward unit normal to J€}. The domain £} is large and homo-
thetic to a fixed two-dimensional (2D} domain; the (dimen-
sionless) characteristic size of {2,

(1.8)

L=¢1hs1, (1.9
is the aspect ratic of the container and
B=pgh*lo and C=v+pHoh) (1.10)

arc (he Bond number and (he capillary number tespectively;
here g is the gravilational acccleration and  is the surface
tension cocllicient. In the first boundary condition {1.7) ci-
ther we allow a contact linc motion or nol. In the former casc
we assumc Lhal the static conlact angle is 90° and cmploy the
usual phenomenological Taw (scc, ¢.g.. [12,13]} 1o account
for contact linc dynamics; (he phenomenological constant />
is posilive and (hus the motion of the contact ling is dissipa-
tive. And when the contact line is fixed {at the upper edge of
the lateral wall) we assume that the height of the lateral wall
is A and (he liquid volume equals /& times the arca of 2, Nole
that the rigid-body oscillating, flal stalc

u=0, w=p=0, /=0 (L1
is a (steady} solution of Eqs. (1.1)—-(1.7} in both cases. The
linear stability diagram of this solution is always like that
skeiched in Fig. 2, where

apw'?—K*=0 and a0 —K,>0 as o,

(1.12)

The upper and lower marginal instability curves correspond
to the Faraday instability and the RT instability. respec-

tively, which are considered in Sec. II A and Sec. IIB. The
analysis in this paper applies in the stable region of Fig. 2.
oulsidc a neighborhood of (he upper instabilily boundary;
thus the cigenmodes associated with the Faraday instability
arg cxponcntially stable and can be ignored.

Figurc 2 is qualilalively similar (0 the onc oblained ¢x-
perimentally by Woll [9] and illustrates that siabilization is
always [casible provided thal « is sulficienily large., Of
course, the lorcing lrequency is bounded in practice 1o no
higher than ultrasound frequencies (say. =20 kHz); a second
limil resulls [rom (he mechanical difficultics in imposing 0o
large an acccleration {note that the nondimensional accelera-
tion aw? grows with @ along the lower bound of the stable
rcgion in Fig, 2}.

Thus we shall be mainly concemced below with the limil
w— . But for simplicity we shall begin in Sec. IT A with the
lingar stability analysis of the basic steady state (1.11) in the
viscous limit

BL*~C~D{L g~ w1, (1.13}
which vields the most general results because in this limit no
further approximation is made (in addition to linearization).
That analysis will also be valid for large  and will help us
to identify the distinguished limit

BL*~awC~a*w’DIL?~1. o=, (1.14}
which is the limit that provides the most general results for
large forcing frequency. This limit will be considered in Sec.
IT1, where the leading nonlinear terms will also be taken into
account to obtain an evolution equation for the free surface
deflection. Finally, the more general case of a two-tluid layver
will be considered in Sce. IV, where (or simplicily the fingl
forn of the cvolution cquation accounting lor weakly non-
lincar dynamics will be only derived in (wo limiling cascs,
namely, that in which onc of the fuids 1s inviscid comparcd
o the other one, and that in which the densitics and viscosi-
tics ol both Muids arc almost cqual.

II. LINEAR STABILITY OF THE FLAT STATE

Let us linearize Egs. (1.1)—{(1.7} around the basic state
{1.11) 1o obiain

V-u+dw/dz—0. du/dt——Vp+Au+sufoz’,

(2.1}
awlat— —opliz+Aw+ 9 wiaz*,
if (x,v)ef) and 0=2z<C1_ and
u—0, w—0 il z—1 and il (x,y)es, (2.2}
w—dffat, oufdz+Vw—0 il z—0, {2.3)

p—aw fcos{wt)—BC 3 —C A —2aw/dz il z—0,
(2.4)

Vin——Daffor or f—0 if (x.v}edl),



f Sl tdxdy =0, (2.5)
0

As anticipaled in Sce. 1 and illustrated in Fig, 2, marginal
instability occurs at two possible type of modes, which ex-
hibit short and large wavelengths, of the order of the depth
and the width of the container, respectively.

A. Short-wave instability: Faraday waves

This instability, named after Faraday [14]. has been thor-
oughly studicd [15-17]. In (he limits {1.13) and (1.14} (he
mosl unstable modcs cxhibil a wavclength that is at the most
of the order unily. Since the contlaincr cross scclion is large,
cnd-wall clfcels arc usually ignored, and the stability analy-
gis ol Egs. {2.1)—{2.5) is madc by only considering the nor-
mal modes, which are of the form

{u,w.p, N —(UW. P, Fexpliik x+kp)]+ce,
(2.6)

where U, ¥, and P depend only on z and ¢, and F depends
only on ¢ and c.c. denotes the complex conmjugate. Substitu-
tion of these expressions into Eqs. (2.1)—(2.5} and elimina-
tion of U yield

P— kPP, W, — P+ W, — kW, (2.7
W—W.—0, at z——1. (2.8)
WoOF=W_1PW=0, at z=0. (2.9

P—aw?Fcos(w)—(B—k5FCP—2W_, al z—0,
(2.10)

where &= k| +4&5 is the wave number of (he mode. The
calculation of the instability threshold forcing amplitude ap
requires to determine those Floquet exponents of Eqs. (2.7)-
(2.10) whose real part vanishes: in fact, these exponents are
numerically found to be either 0 or i which correspond to
rcal Floquel multipliers 1 or — 1, respectively, For fixed val-
ucs of (he remaining parameters, (his delermings a curve a-4
whose absolute minimum vields @,.. The numerical calcula-
tion of the Floquet exponents is fairly cheap. even for ex-
treme values of the paramcicrs, by using (the method de-
scribed in Ref. [18]. The problem still depends on «, B, and
. which makes its analysis fairly tedious. For the sake of
brevity we only give results here for sufficiently large fore-
ing [tcquency, namely,

1+ {(B/CH g, (211
which is the more convenient one for the main object of this
paper. In this limit, gravity can be neglected and the margin-
ally unstable modes exhibit a short wavelength k& '~ '°
< 1. As a consequence, Eqs. (2.7)—(2.10} can be further res-
caled to obtain a new problem that only depends on a res-
caled wave number ™% and on the parameters o w and
("*e. Using (he latier two paramelers, we numerically oblain
the instability threshold curve plotied in Fig. 3, which pro-
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I'l{3. 3. A plot of the rescaled l'araday instability threshold am-
plitude azo!?=(2 7w 1)a¥ in lerms of (w=27e*p?ria
in the limit {2.11); the asymptotes as Cfw—0 and C*w—o arc

plotted with dotted lincs.

vides the upper inglability limil in the skeich in Fig, 2, Nole
that this curve satisfics the first condition (1.12), with

K*==167. (2.12)

Let us poinl oul here that the additional requircmenl
(B/C)*¥ < w in Eq. (2.11) is seen to be automatically satis-
fied in the stable region sketched in Fig. 2 when the upper
boundary is as calculated here and the lower one is as given
by Eq. (2.40} below. Thus this additional condition is unnee-
essary when seeking stability in the limit w3~ 1.

B. Long-wave instability: Rayleigh-Taylor

As is well known [3], in the absence of vibration (if &
— 0 the linear problem {2.1)—(2.5) exhibits exponential in-
stability (i.e., the RT instability) whenever

B=BL*>\,. (2.13)

where A is the lowest cigenvaluc of,

A+ nF—constin £, aF/gn—0 or F—0 on &),

Fdxdv=0, (2.14)
{1

with

A= taxi v dH v, x—xiL, v—yiL. (215}
€ is the resull of rescaling  with 7. and &/dn is (he result-
ing derivative along the oulward unil normal. For (he sim-
plest cross sections, namely, the circle of diameter 1, {1, and
the rectangle of sides d= 1 and 1, {1, the lowest eigenvalue

Xq. and an associated eigenfunction I+, are given by

No=4y]. Fo=J,(2yr)cos(d 6,) in {1,
(2,16}

and N,=mfd?. F,=cos{wx/d) in {};

if the first boundary condition in Eq. (2.14} applies, where
¥ ==2.40 is the first positive rool of the derivative /| of the



first Bessel function./, , » and @ are polar coordinates, and 4,
is an arbitrary constant resulting from invariance under rota-
tion; and
No=495, Fo=J1(2y2ricos(8 8,) in ),
(2.17)
=71 d7tld?, Fo=sin(2wx/d)sin(#y) in {1,.

il the second boundary condition in Eq, {2,14) applics, where
v,==3.83 is (he first posilive ool of ./,. Nole that all these

eigenfunctions are antisvmumetric on a straight line (x =d/2

in &, or 88,1 w2 in €1,). There are also sy mmetric
eigenfunctions, but they are associated with larger eigenval-
ues.

Thus the instability sets in for O(Z ) values of the Bond
number 5. Viscosity does not affect the instability threshold
and the only stabilizing effect results from the surface ten-
sion. In fact, the stabilizing effect of vibration in this limit is
to “‘create a surface-tension-like’” mechanism as we show
now. To this end, we consider the viscous limit (1.13} and
use a two-time-scales method as follows. In the distinguished
Timit (1.13) we rescale the Bond number and the horizontal
space variables as in Egs. (2,13} and {2,153}, introduce (he
slow time variablc

F=t/r* (2.18)
and seek solutions of Eqs. (2.1)—(2.5) of the form
u—7 'w(x.p.z.0e™+L hoh+cc.
A TR ER N RS
w=L w,{x.v.z.,0)e'” I L *hoh | cc.
+ LM (X2t (2.19)

p—polxy.z.0e™ +L *hohtce.

‘ Lizp\(‘;—;jj;z'?) | c .7

f=L *fixy.De™ 1L *hoh | cc. | fi(x V.00 1

where ¢.c. denotes the complex conjugate and hoh. stands
for higher order harmonics, depending on the fast time vari-
able 7 as ™, with m+#0.+ 1. The scalings (2.19) are ob-
tained by an orders-of-magnitude analysis in Eqgs. (2.1)-
(2.5), anticipating that in the absence of vibration the
dispersion relation of the long-wave modes of Eqs. {2.7)—
(2.10) associated with the RT instability is x4 (= growth
rate) —(B—&7Y/(3CH+O(k®) as k—0. Substituting Eq_
(2.15) and Eqgs. (2.18) and (2.19} into Eqs. (2.1}—(2.4} and
the last equation in Eq. (2.5) vields

Vou,+ow,/oz—0, iou,— —Vp,+a*u,/dz’,

apyidz—0, (2.20)

Vou,+ow, /oz—0, Vp,— o™ loz*, dp,foz—0,
(2.21)
il (x,»)e) and O<<z<C1, and
(2.22)

u,~u,—0, w,—w,—0 il z—1,

Wwo=iwf,. w,=df.1dt, ow,ldz=adu,liz=0 if z=0,

(2.23)
po=aw’f 2,
po—aw (f,+ [ )R2+BCTA +CTIAS, if 20,
(2.24)
j fuddxdy —0. (2.25)
9]

where ). V. and A are as defined above and the overbar
denotes the complex conjugate. Equations (2.20)-(2.24} do
not apply in a boundary layer of (1) thickncss ncar the
lateral walls. The analysis of this boundary layer (see Appen-
dix A) provides the following boundary conditions for the
solution in the bulk:

1
dflan——Daf lal or f—0, fu_,-?ldz—() on 482,
]

(2.26)
where n is the unil outward normal o €0 as abovc,
D-2D/[2+ a*w*CP () 17]. (2.27)
and the Munction ¢ is delined as
H(w)—1—Re(( Viw) ™! tanh iw) (2.28)

wilh Re¢ standing (or the rcal parl. Nole that

Hlw)>>0 forall w=>0, and H{w)—1 as w—oc.
(2.29)

Integration of Eqs. (2.20)—(2.24} vields

pl‘) - (Im:/{‘\/z‘

u,=i{aa2)[1 {coshvim) ' coshiwz]Vf,.

(2.30)
w,—ilaw)[1—z—(Yie cosh Jiw) ™!

% {sith~/jw sinh~iwz)]Af,. (2.31)
Fo—(a2)[1-(iw) "tanhielAs,  (2.32)

u,— (22— 1)¥p,/2. w,——(2-3z+z)Ap 06,

aflaf= ApJ3, (2.33)

p—BC A+ [C P+ w  d(a)2]Af,.  (2.34)
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lil¢r. 4. A plot of the rescaled Rl instability threshold aceelera-
tion, A—[A,CHNBLY apra? =[N W5 A" i a2 mw®)?,
in terms of the nondimensional forcing frequency, w=2mww*k* v,
for the indicated values of the parameter o—Ag/{BL%)
=N,/ (pgs?), us given by Eq. (2.38).

where the function ¢ is as defined in Eq. (2.28). And a
further substitution of Eq. {2.34) into the last equation in Eq.
(2.33) leads to

3af 101 | BO AL [C70 1 @l pl w)/2] A%,

—0 in . {2.35)
where A? stands lor the biharmonic operator. In addilion, we
musl use (he volume conservalion condition {2.23) and (he
boundary conditions (2.26} that, using (he [first cxpression
(2.33}, arc

of fon——Daf,lof or f,—0,

BOT2afton+[Cr+ a0’ p(w)2)dAf fon =1 (2.36)

on 0}, f Sy ey =1,
19

Note that, as anticipated above. the effect of vibration
[mcasured by (he term a”w’ ¢(w)| is equivalent (o enhanc-
ing the ceffective surface (ension of the Iree surface, measured
by €'~? in nondimensional (crms. According (o (he analysis
in Appendix B, this solution is asymplotically stablc, il and
only il

BL'=B<B =N[1+C 0 p(w)2], (237
where A, is the lowest eigenvalue of Eq. (2.14}. Thus, the
instabilily (hreshold amplitude @y, is given by

[MoCU(BLY |kl =2[1 Ny /(BL) )/ d{w)
(2.38)

and vields the threshold acceleration plotted vs « in Fig. 4
for several values of the parameter A, /(377 which must be
such that 0=\, /(/31.°)<<1, in order (hal (he sysicm is un-
stable in the abscnce ol vibration (otherwisc, the RT insia-
bility docs nol appcar). Noie thal, according lo the nondi-

mensionalization in Sec. I, Ao /(BL%)—hoo/(pgs?). If the
surface tension is not much larger and the density is not
much smaller than those of the water, this parameter is small
whenever the horizontal size of the container is large com-
pared to the capillary length (v/o/(pg)~3 mm).

Some remarks about this result are now in order:

(1} The stabilizing effect of vibration is like that of sur-
face tension, which can be completely substituted by vibra-
tion. In the absence of surface tension ("~ B—cc and the
instability threshold is given by the highest curve in Fig. 4.
The origin of this stabilizing effect is clear from the solution
{2.301—(2.34} of Egs. {2.20}—(2.24). If a {nonconstant) free
surface deflection f, is present then the system cannot vi-
brate as a rigid body and an oscillating flow appears whose
associated free surface deflection is proportional to aAf,
[see Eq. {2.32)] and in tum produces [through nonlinear in-
teraction with the primary oscillating pressure field
—aw’z cos(wt). accounted for in the second term in the left-
hand side of Eq. (2.4}] a nonoscillating overpressure propor-
tional to a>w>Af, : this is the stabilizing term.

{2) The new inslability (hreshold 753, given in Eq. (2.37) is
higher than (hat in the abscnee of vibration, which is k. For
fixed values of the remaining parameters. the plot @@ vs.
w in Fig. 4 is as sketched in the lower curve in Fig. 2 and
satisfies Eq. {1.12). with &, =~+2(BL" A )/(ACH).

{3} If @ and w are bounded then, according to Eq. {(2.37)
stabilization is only possible if B7.° is bounded. which means
[see Eq. {1.9)] that B must be quite small, and this requires
that the depth be extremely small on earth conditions. Con-
dition {2.37) is written in dimensional terms (see Sec. I) as

Arn[a/pg)+ (2 mate* )V h (2w V) 2a)].
(2.39)

where ¢* and w* are the dimensional forcing amplitude and
frequency. Thus the instability limit depends on viscosity ()
through the argument of the function ¢. This is not surpris-
ing because the stabilization due to vibration is due to oscil-
lations in the bulk that are viscous if w—2mww™h*/v is
bounded. In particular, as » increases (he viscous lime A%/ »
decreasces, and (he lorcing [requency w® must also ingrease
lo mainiain the stabilizing cffect of vibration, The situation is
much better as aw— e, which is easily achieved in the real-
istic limit e»— 2o, when [ ¢(w) — 1, see Eq. {2.29), and] con-
ditions (2.37} and (2.39) become

BLE<n [ 1| CPa o p(w)f2]
and

RN ol pg)+ (2ma*w™) hi2g]. (2.40)
This condition is independent ol viscosily [which in this
limit % 1 only comes into play through the Faraday insta-
bility, sce remark (4) below]. The reason is that now the
oscillatory Mow that produccs (he stabilizing clTecl is invis-
cid except in boundary laycrs, which only produce a higher
order clleel. I, lor illustration, we consider a circular con-
lainer of diameter # =3 ¢m and depth #—35 mm ((hus the



aspect ratio #/k — 10 is large) and assume that the contact
line is fixed, then ?\0:4y§=58.7 [see Eq. (2.17}] and the
condition (2,40} is salisficd provided that

al/p<418 em’/st and 2wa* @™ >40.9 cm/s.
(2.41)

{4} In addition, we must avoid the Faraday instability by
requiring that @+ w is below the curve in Fig. 3 the validity
conditions {2.11) are seen to be satisfied for both mineral oil
and water. For a sufficiently large forcing frequency. Faraday
waves are avoided. provided that ayJw<K*. which is writ-
ten in dimensional terms as 2 ww* (@*)*=K*%v, and this is
compatible with Eq. (2.41) only if 27w* »=600 cm’/s”.
This condition is satisfied for mineral oil ¢ v~ 1 cm?®/s) if,
say, @*— 107 Hz and a®==0.6 mm, and for clean waler (¥
—0.01 cm’/s). il @* — 10* Hvz and a* — 6 . OF course (he
gituation is mugch betier both in microgravily conditions and
when the liquid layer 1s supporicd by another layer of liquid
of nonzero density. The latter case will be considered in Sec.
V.

{3} The analysis above has the obvious limitations of any
linear theory. Nonlinear stability will be analvzed below.

III. WEAKLY NONLINEAR THEORY FOR LARGE
VIBRATING FREQUENCY

According (o romark (3) al the end of Scc. [ we assume
that

wz] and aws 1. 3.1

A, Asymptotic derivation of an evolution equation for
the free surface

According to Eqs. {(2.29—(2.34), in order that all the
terms in Eq. (2.33) be of the same order in the limit (3.1), the
following rescaled parameters and slow time variable

R=RL*, C=awC~1,

D=2a"0"DI[(2 1 &’ CHL} ]~ 1, t=a’w’t/L*,
(3.2)

must be of order unily., Thus we replace (he cxpansions
(2.19) by

u=awl 'ux.y,z.00e | a*wl holh | cc.
+ azwgl,_3us(;,;,z,f)+ s
w—awl 2w, (x.0,z,0e'+ o wl "*ho.h +cc.

+atel W (v,

p=aw’p {x.v,z,0)e" | a’w’L *hoh | cc.

+a’w’l ‘px.y.z.iy+ -

f—al *fxyv.0e+a’L *hoh+cc+f(xy.i}+- -

which are now substituted imto the original nonlinear prob-
lem (1.1}—(1.6), to obtain

Vou,l ow,/oz=0, im,= Vp,. dp,/loz=0, (3.3)

Vou,+ow, /az—0,

—Vp,+du,loz* (;0 Vu,+ »aﬁuo fdz+cc.,

dp fdz=0, (3.4}
il (x,y)e) and f,<z<1, and
u,— 0, w,—w,—0 il z—1, {3.5}
wo—if,tu,- Vi, w,—af lof+u,-Vf,,
ou fdz=0 if z=f_, (3.6)

pr)_.[sz” p»\_{/{‘[’)+f['))/2+l}(ﬂ'izjj\"»(?iz&/; ir Z_.[\'f
(3.7}

Jﬁf; dxdy=0. (3.8)

Note that viscous terms have been ignored (because they are
small compared to inertia) in the second equation (3.3}, This
approximation fails in two thin viscous boundary layers, with
O(w ") thicknesses, attached to the free surface and the
upper plate; but the effect of these [which could in principle
change the boundary conditions (3.5)—(3.7)] is seen to be of
higher order and thus can be ignored in first approximation
in both the oscillatory and the nonoscillatory parts of the
solution. Inertia is much smaller in the second equation (3.4).
where viscous terms cannot be neglected because they are of
the same order as the convective terms. And, as in Sec. II,
the cffeet of the lateral walls is appreciated only in a lateral
boundary layer, with a (1) thickness, near the lateral walls
where Eqgs. (3.3)—{3.7) do not apply. This boundary layer
{see Appendix A} provides the following boundary condi-
tions [or the solution in the bulk

- ~ - 1 -~ Py
affamn— —Daf far or f,—0, fusvnc!z—() on &),

0

(3.9}

On the other hand, we consider the following overall con-
linuily cquations, which arc oblained upon intcgration of the
(irst cxpressions in Eqs, (3.3) and (3.4} in /,<z<{1 and sub-
stitution of (he first two boundary condilions (3.6),

/ 1 i / 1 .‘|
| e gt
Vi J u,dz | =if,, VI f u,dz | =af./at.
LS Fy LS !

!

Using these, we may integrate the remaining equations and
boundary conditions in Egs. (3.3)—(3.7) o oblain

2,

pa_./‘s/z.- uo_iﬁ./‘s/z.- .fo_(l 7./‘3)5.[5/27 |ﬁfs



usf(zz_zfs"_ 1 +2fs)[4vps+ v’(lﬁfjl’l)]/&
(3.10)

&fs/aff _ﬁ'[(l_fs)3v[4ps'+ ‘vfs

/12, (3.11)

P BCT A ATCT (0= WAL~V 1 P2 in O,
(3.12)

where we have taken into account that (FV“.)‘;. . ﬁ)ﬁ’f\.
=V([Vs[hi.

The evolution equation we were looking for is given by
Egs. (3.11} and (3.12}. Also, invoking Eqs. (3.8), (3.9}, and
(3.10), we have

af,lon——Daf. 1ot or f,—0,

daop ton 1 AV 7| Man=0 on afl. f S dxdy=0.
19
(3.13)

And for convenience we rescale the time variable and drop
out the subscript s to rewrite Eqs. {3.11)—(3.13} as

affar——Y.[(1— V], with

U=nfH (1= yNA V2, in O, (314)

affon——gafior or f—0, sl/an—0 on 1,

ﬁfd:?dﬁ—o, (3.15)

where [see also Egs. (1.13} and (3.2)]
Y= 2BH2+ CHy=2807 (24 2w CPY,
y= 22+ (=0l CH (2 P’ CH) <1,
B2+ CHNI6CH=DI3CLR),

=2+ CHIN6CH=(2+ a0 CPNI6CHLY).
(3.16)

Equation (3.14) is somewhat similar to the Cahn-Hilliard
equation. Since 0<Cy<C1, the problem (3.14} is uniformly
parabolic and thus has a unique solution satisfying given
initial conditions [19-21] whenever

| /] —bounded and f=<<1. (3.17)

Note that the first boundary condition is somewhat nonstand-
ard, but it is dissipative becanse F=0 and thus standard
results for Dirichlet and Neumann boundary conditions are
somewhat straightforwardly extended when this condition
applies. In addition to the solutions satisfving Eq. (3.17) for
all 70, we could allow f— 1 in a time-dependent closed
subset K (7) C£). which physically corresponds to a dry spot
on the upper plate. The associated problem, not considered

here, would be a free boundary problem and should be com-
pleted with appropriate jump conditions at the boundary of
K,

B. Lincar stability of the flat state

The lincar stability of the simplest sicady stale of Egs.
{3.14) and {3.13), /=0, is analy~cd as usually, by (irsi lin-
earizing around =0 and then replacing f(x,v,7) by
Fx.)e” in the resulting problem, to obtain the linear ei-
genvalue problem

~AU—pF, AF+AF-U in 0, (3.18)

Ao — — Bl or F—0. aUton—0 on ),

jyﬁ'd;?djifu, (3.19)
i

which is analyzed in Appendix B. According to Property Bl
the instability threshold is A — i, and invoking the [irs( cx-
pression in Eq. (3,16}, the main result in Sce. 11 [namely, Eq.
(2.40}] is recovered.

C. Nonflat steady states without dry spots

The steady states of Eqs. {3.14) and {3.15) that do not
exhibit dry spots are given by

(I —yNAf+0f— ¥ V2 2—const. f<1 inQ},
(3.20)

affgii=0 or f=0 on i}, f__f'd&“dj?:o. (3.21)
Q

As seen in Sec. IIIB above, the flat steady state /0 is
stable if A <Ch,. Since Eqs. (3.20} and {(3.21) are a particular
case of Eqs. (C1} and (C2). with

H(fy=vf.

we may apply the analysis in Appendix C to obtain the fol-
lowing property conceming the local bifurcation of Egs.
{3.20) and {3.21) at =0,

Property 3.1.  [lor generic domains b, such that the
eigenfunctions of Fq. (2. 14) associated with X — \,. are such
that

(3.22)

f Edxdv 0, (3.23)
0

the hifurcation is transerilical. And if § is either a cirele or
a reciamgle, then the bifurcation is subcritival.

Proof, Singe 177 (0)— =0, il Eq. (3.23) holds, then (he
constant I'» in Eq. (C12} is nonzero and according to the
discussion in Appendix C, the bilurcation is (ranscritical.
And since H"(0)=0, Property Cl immplies that for circles
and rectangles the bifurcation is subcritical.

The following global result gives sufficient conditions for
nonexisicnee of nonflat sicady slales withoul dry spols.



Property 3.2. Letf h >0 be the lowest positive eigenvalue of
Eq. (2.14). If v<<2/3 and N=No(1 =3 v/2) then Igs. (3.20)
and (3.21) enly possesses the flat sofution [—0.

Proof. In order to prove this property, we first note that
the solutions of Eqgs. (3.20} and (3.21) satisfy

Jﬁ[(l =3y A dxdv =0, (3.24)

as rcadily obtaincd upon multiplication ol Eq. (3.20) by [,

integration in {}. integration by parts and substitution of Eq.
3.21). And we only need to use the variational definition
(B10) of A, to obtain the stated result.

D. Lyapunov function and large-time behavior
The problem {3.14) and (3.15) admnils a Lyapunov [unc-
tion that is rcadily obtained upon multiplication of the [first

equation (3.14) by U, integration in (1. substitution of the
second equation (3.14} and of Eq. (3.15), and integration by
parts, to obtain

d&ldr— — Jy(l — VIV U Pdxdy
Lo}

*ﬁf AT—yN(aftaryds
9]

or d&idr— — ﬁ(] — N3V U dxdy, (3.25)
i}

depending on whether the first or the sccond boundary con-

dilion (3.15) applics, where (he rescaled energy £ is given by

e [ 1099w

Equation (3.25) and a wellknown result on infinite-
dimensional dynamical systems (Ref. [22]. p. 30. Lemma
3.8.2) {whose assumptions are checked in this case by em-
bedding theorems [23] and a priori estimates for elliptic
[24.25] and parabolic [19] equations} vields the following,

Property 3.3. If a solution of Egs. (3.14) and (3.13) sai-
isfies Iig. (3.17), uniformly jor all 7>-0, then fconverges to a
the set of steadyv states without drv spots as 7— .

As a consequence of this property, each solution of Eqgs.
(3.14) and (3.15} is such that either (i) becomes unbounded
or develops a dry spot {for finite or infinite time) or (ii)
converges 1o the set of steady states without dry spots, con-
sidered above in Secs. III B and TII C.

IV. TWO IMMISCIBLE LAYERS

We consider now a closed container of height 24 and
width & such that #<¢#, which is filled with two immiscible
liquids of different densities., with the lighter liquid below
the heavier one. We use a vibrating Cartesian coordinate
sysicm wilth the z— 0 planc on the unperturbed interface,
assumed to be horizontal, and employ the viscous time
RPpt+p ¥ (ptv +p v7) and the Tength 4 for nondi-

mensionalization, where p and v denote the density and ki-
nematic viscosity and the superscripts + and — are used
hereinafter for the variables pertaining to the liquid above
and below the interface. The governing equations are now

Vou +ow /dz—0, 4.1
(1=m)au™/at+(u - Vi +w ou/dz]
= 2Vp*r i (1*+alAu™ | Fu-/az®), (4.2)
(1xm)[ow=/at1u™-Vw* | wraw~/dz]
— =28p*taz+ (1 n AW+ FwlazY), (4.3)

if (x,v)eQl and ' flx p.6)=2 ' z<<1 ' 4, with boundary
conditions

u -0, w —0 if z— ' (1'8 and if {x y)eH).

4.4}
u —u', w —u -Vi—w'—u' -Vi—affot if z—f.
{4.5)
(Liayen /Joz I Vw' )y {1 #u)édu foz | Vw }
—O(VuT ||V +(JouT oz + [Ww T} V/R) il z— )
{4.6)

pT—p T —aw’feos(wt)—BCT S
—COEVL VIO
—2(1+n)ow "19z—2(1—n)ow [dz
+ OV + (Jou™ faz|+ [Ww )V i z— /.
4.7

Vin——Daffar or f—0 if (x,v)edll,

Lf(x,.v,f)dxdv: 0. (4.8)

where w, w, p. . V., V- A_(} &2}, and n are as defined in
Sec. I, with fand L (the dimensionless characteristic size of
(1) satisfying again Eqs. (1.8) and {1.9). The positive param-
clers &, m (Arwood number) and », (he effective nondimen-
sional vibration amplilnde, a, and (he Bond and capillary
numbers are now

S—(h™=hT)Hh*+h™), m—(pT—p Wip~+p7),
n=(p'v p v )p v ip v,

a={a*/h)(p" —p M(p +p ), (4.9)

B—(p*—pT)gh* /o0,

and

C=(pT v +p v )[(p +p )oh] 7



where a* is the dimensional vibrating amplitude, 4~ are the
unpertutbed depths of the liguid layers (such that 2% +4~
—2h), p~ arc (he densitics, g is the gravilational accclera-
lion, »* arc the kingmalic viscositics, and « is (he surlface
tension cocllicient.

In (he absence of vibration (il @ —0) the quicscent stale is
lingcarly unstable duc to RT instability, il and only il, Egq.
(2.13) holds, Wilh vibration, (h¢ lincar stabilily analysis is
completely similar to that in Sce. 11 and yiclds the asy mplolic
stability condition

B< B~ n[1+{1— )’ 2201 —m O},
(4.10)

where RB=RL” is as defined in Eq. {2.13). Ay is the lowest
eigenvalue of Eq. (2,14} and. as in Sec. II. we assume that

w1, {4.11)
With the same notation as in Sec. II B, remark (3). condition
(4.10) can be written in dimensional form as

- ey (2ma*w*)?
AN, [

{(p"—p g 2g

h'E (p'+p )
(h=p™+h*p Hp —p7)]

Nolec that as in the casc of only onc liquid layer and for the
same reason [remark (33, at the end of Sce. 11 B] this condi-
tion 1s independent of viscosily.

In (he limil (4,11}, the analysis of the weakly nonlingar
dynamics ol the syslem procceds as in Sce. [, We again
assume that Eq. (3.1) holds, rescale C, D, and the slow time
variable as
CoawC, D20’ DI[(2+ > CHL3]. - a0 t/L?,

{4.12)

where ' and I} are again assumed of order unity, and seek
the expansions

— | o~ ; —
w=awl ', {xy,z)e“ ool *hoh | cc

pTmawip(x. vz, )¢+ a?wll, " Fhoh e,
2 i, YT f .
taw . fp (xyz.0)+
Jmal. A {x v D gt L Mo h e+ [ (x v, O+

which arc now replaced inlo the original nonlincar problem
(4.1)—(4.8), 10 oblain

dptaz—0, {1 ' mu, ——2V¥p_, V.u, +adw, /dz—0,
{4.13)

ap, laz—0,
(1xn)du /622 =2Vp +(1£m}

X[(Kj-ﬁ)uj +w, ou,foz+ec].

Vou+ow taz—0, (4.14)
in(x)efl, /. <xz<1+45, and
u, =0, wo=w, =0 if z=+{1+8), (415

u, Vy=af,/af ifz=f,,
{4.16)

- . 0
o u(;'vf.v:'rf(n W

u, —u, , {(1—m)ou, /dz—(1+n)ouS/oz if z—f,,
(4.17)

Po —Po —fil2,
Py s — Lt LA BET Y+ CTRS, i 2
(4.18}

And again, the analysis of the laicral boundary layer near the
lateral wall (scc Appendix A) and volumne conservation yicld

dffen= Daf,lot or f,=0,

7 N a+a
f u;»nc!z—J u, -ndz—A,
—(1-8) .

s

Fy o ara N
u, ndzl u, hdz=0 on J{},
f

—E:1 &)

Fe

JJ\. dxely — 0. (4.19)
i}

As in Sec. T A, the following overall continuity equa-
tions in the lower and upper layers are useful

IO A A A U R ) B N
V~|\ J u, dz’\—ifo, V- f u dz|—af, /1.

LI ; VS !
{4.20)

Jx

which [ollow upon inicgration of (he last cxpressions in Eqs.
{4.13) and {4.14) in = (1 S < £z < £ [, and substitulion ol
Eq. {4.16). Using the first of these, the oscillatory problem,
posced by Eq. (4.13), with boundary conditions (4,15}, {4.16},
{4.18}), and (4.19)}, is rcadily inlcgraied (o oblain

Po=(g, = fA, w,=2i(1+m) 'Vp, . (421)

Som (U tm) W1+ 8- /) Vige+/,12], (4.22)

where g, is uniquely given by



V- [(l+mf,—mdVgy+(5—f,—m)VF]-0in £,

[(1Imf, m&¥g, 1 (6 £, m)Vf]n=0 on 4.

Here the expression between brackets exactly coincides with

T DI T ; .
o0 sl @2+ ), "u dz. This linear problem is readily
solved to obtain

ol v, B — Golf(x.v,1)), with
o) — fjx[{:éur m—SY (1 +mé—mS)|dé (4.23)

In order 10 avoid oo involved cxpressions, we do nol
consider the most general values of the paramcicrs in the
scquel, but only two limiting cascs that bear the main ingre-
dienis of (he gencral case. These (wo cases are (hat in which
the viscosilics of (he Tiquids arc disparalc [ic, n— 1 or

1, see Eq. {4.9}] and that in which the viscosities, densities
and unperiurbed depths of both layers are approximalely the
samc,

A. DMsparate viscosities but arbitrary Atwood number and
unperturbed depths

Without loss of generality we assume that

+ ot

pTeTEpT L. {4.24)

Then n=1 and using Eqs. (4.14)—(4.20), the nonoscillatory
flow is readily obtained to be

2= 200 my '[Vp, |

py= 201 m) "\Vp [P f,1 BC *f,1 C PAf,,
{4.25)

u/=[Vp, 1201 1m) V(| Vp,[1)]
X[z [P (116 )1,

Of 1ot — =V - (1+ 8=V pl +2(1+m) "V p 2D,
(4.26)

where we have laken into account the veclor identity
(Vp, )yVp =V (|Vp, )2 Thus f, evolves according
to the parabolic equation {4.26) where, according to Eqgs.
(4.21),(4.22) and {(4.25), p,) +2(1+m) |V p_|* is given by

2p) LA ) YV p, P
= (L m MVigy fI2F1(11m]

XV{go+ [+ (1+m) W [(1+ 86— 1)

XV{ga ! f)] 1 2BC 3,1 207 2AY, (4.27)
with g,, as given by Eq. (4.23}. In addition, we have

afdon——Daf tal or [0,

VipS+2(1+m) "VpI*]-1—0 on .

f ﬁjgd;fi; =0, (4.28)

which result from Eq. (4.19) when taking into account that

1
f u dz— —[Vpl+2(1+m) V(| VpI "}
]

Sy

#{(1+8— 1)1

As in Scc. 1M1, we rescale ¢ and drop oul (he subscripl s (o
rewrile Bqgs. {4.26)—{4.28), allcr some algebra, as

affor— =V -[(1+ 8- °VU], with

22, inQ},

UM+ = 1HMA/ =11 (NIV ]
(4.29)

afion— —Bafiar or f—0, dlifon—0 on I,

f fdxdyv—0, (4.30)
0

where the lunction // is delined as

24+ 1= 8= Y[+ m(f— &)
2+ 31— 81 —m )

H(f)=1
(4.31)

and the parameters A and £ and the time variable T arc given
by

- 2B
24+ CH =8 (1 —m 6)

_ 28I
4@t CH1- (1 -mb)

_@+Cho b 2+ (2+ate’ )t

~n - s = T 2N} g~
6C~ 3010 60~ 61402
{4.32}
Note that #(0)—0 and that 1 - H()>0 if
{18y <f<1+ 6. (4.33)

that is. if the interface does not touch the lower and upper
boundaries of the container. In this case, the problem (4.29}
and (4.30) is uniformly parabolic and possesses a unigue
solution.

If p~ —0 then the effect of the lighter liquid disappears
and we must recover the results in Sec. II1. And this is true
because if m —&§— 1 {we are also requiring #+ — ™~ because
of the nondimensionalization above) then Eqs. (4.29}—{4.31)
coincide with Egs. {3.14) and (3.15). On the other hand,
assumption {4.24) means that the inviscid liquid is the lighter



one, namely that placed below. The opposite case is ob-
tained, still under assumption (4.24), by changing the direc-
tion of gravily and inicrchanging (he lower and upper lig-
uids, which mcans according lo Eq. (4.9), (o change (he signs
of m and ». Thus both possibilitics arc included in Egs.
(4.29) and {4.30) by just allowing m to vary between | and
I

The analysis in Secs. IIIB-IIID is readily extended to
Eqgs. {4.29) and {(4.30). In particular,

{1} If, in order to analyze the linear stability of the flat
steady state =0, we linearize Eqs. (4.29) and (4.30} around
F—0 and replace f{x.y.7) by I'(x »)e#" in the resulting
problem, then we obtain again the linear eigenvalue problem
(3.18)-(3.19}. Thus the instability threshold is again X —h,,
which according to Eq. (4.32} yvields the following threshold
value of the Bond number

BLY*<B,— N[1+(1 =8N’ CH2(1 —m 8} ].

Thus the threshold value {4.10) is recoverad.

{2} As in Sec. IIIC, the bifurcation from the flat state at
A— X, is transcritical lor gencric cross-scolions, such (hat
Eq. (3.23) holds. And since, according (o Eq. {4.31),

H(0)= 201 —mH)a w2 -0
(1—m& 21 —mS+a e CH1— 52)]/ |

Property Cl. in Appendix C, implies that bifurcation is sub-
critical if the cross section is either a circle or a rectangle,

{3} As in Sec. Il A, a rescaled overall mechanical energy
equation is obtained upon multiplication of Eq. {4.29) by U,
integration in 1. substitution of Eqs. (4.29) and {4.30}, and
integration by parts, as

tdxdy

d&fdr—— Jl(]—f)-ﬂﬁy
—ﬁJ LV=1inNafionyds  (4.34)
afl

VU drdr.

or d&ldr—— fN(l—f)3
19

depending on whether the first or the second boundary con-
dition (4,30} applics, where (he rescaled energy £ is given by

e [ BN AP 6

Thus the problem (4.29} and (4.30) admits a Lyapunov func-
tion and, procecding as in Scc. 11D, we conclude that the
solutions that satisfy Eq. (4.33) uniformly in 0<I 7<= con-
verge to the set of steady states that satisfy Eq. (4.33).

B. Zero Atwood number and cqual viscosities
and unperturbed depths

Now we take

m—n—06-0.

Then Eq. (4.23) vields G(£)—¢%/2 and the expressions
{4.21) and {4.22) for p_ and f, reduce to

po —SA8x 1 =V (1= V2],

And we only need (o use Eqgs. (4.14)—(4.20) (o oblain the
nonoscillatory low as

- (z—[,FV(g,=G)

u.\' ’_I_
@AY Vg + (1Y
4

U BINSIALD.
4 *

py =(g1 =G 2Np [P af1or=V U],

{4.36}
where G and U, — — /7, u dz are given by
Gy=2BC 2,120 PR LIVEP LV [0 sV

IR AR D

* 12
LT 2f Vg L (L DVG]
8
B (l_fg)( ! l_fs)(Vgl_fstl)

. (4.37)

In addition, according (o Eq. (4.19} we have the [ollowing
boundary conditions

of fan——Dof,tat or f,—0. U .-nm—0 on (1,

J_f:f dxdy=0, (4.38)
{1

and using Eq. (4.37) the boundary conditions U, -n—0 are
scen 10 be cquivalent 1o

dg tan—aG tan—0 on 40, (4.39)
On (he other hand, according (o Eq. {436}, we have
V. (U, — U, )—0; using Eqgs. (4.20), (437}, and {4.39) we
obtain after some algebra

28, =V [(3f, FIVG,] in . 2dg,/on=0 on .

This equation uniquely provides g, (up to an additive con-
stant} in terms of £, as

gi= GV-[(3f, fHVG D2, (4.40)



where G is the Green {integral) operator of —& in . with
homogeneous Neumann boundary conditions. defined by Eq.
(B4) [where U'— G([)] in Appendix B. Substitution of Eq.
(4.40) into Eq. (4.37) vields, after some algebra,

VU -V [(1-/°VG 124
—[(A=f81¥ S, - VIGUV - [(3/,— VG 1]
—[(1=FGA- LRIV NG,

where we have laken inlo account that A(G/ )=/ by dclini-
tion of G. And f, is given by (hc parabolic (inlcgro-
dilTerential) cquation defined by (he sccond cquation in Eqgs.
(4.36) and {4.41), with the boundary condilions {438} and

(4.39) and approprialc initial conditions, For convenience,
this problem is rescaled as

(4.41)

aftgr——V-[(1-/PVUTMA-[301—/)/M]
ViVIGV-[(3/—MVUDY]
=313 IV VA
with

U=Af1{l yAEf vV (4.42)

dftan——Bafidr or f—0, 4U/on—0 on 4,

f fdxdy=0, (4.43)
I
where we have dropped out the subscript s from f, and the

parameters v, /3, and A, and the rescaled time variable 7 are
defined as [see also Eqs. (4.10} and (4.12)]

A—2B/(2+ C*Y=2BL(2+ a% o’ C).
y=C(2 1 CH=a?*CH (2 | ate’ )<,
B2+ CHNDN6CH=NI3CA3),

72+ CHIN6CH =2+ a0 CHHI(6LACY).
(4.44)

The analysis in Secs. IIB-D and some of the results
there are extended to Eqs. (4.42) and {4.43). The following
comments are in order.

{A) If, in order to analyze the lincar stability of the flat
steady state f— 0, we linearize Eqs. (4.42) and (4.43) around
/=0 and replace f(x,y,7) by F(x,v)e*” in (he resulling
problem, then we obtain again the lingar cigenvaluc problem
(3.18) and {3.19}. Thus (he instability threshold is again &
=M\o, which according to Eq. (4.44) vields the following
threshold value of (he Bond number

BLA< B, =N (1 +ae’C?2). (4.45)

Thus we recover Eq, {4.10),

(B) When analyzing the biforcation from the flat state at
A=\, we may take df/d7=0, I/=const in Eqs. {4.42) and
{4.43). to obtain the problem (Cl} and (C2) considered in
Appendix C, with

H()— ).

Thus the bifurcation is transcritical for generic cross sec-
tions, such that Eq. {3.23) holds. And since, according to Eq.
{4.40),

{4.46}

H'(0}y-0 and H'{0)-2y>0,

Properly C1, in Appendix C, implics thal bifurcation is sub-
critical for both circles and rectangles.

{C) Asin Sec. II1 A, we may try to find a Lyapunov func-
tion, but a similar procedure does not seem to give satisfac-
tory results now. Thus we are unable to prove convergence
to the set of the steady states.

V. CONCLUSIONS

We have considered in Secs. IT and III, the combined
clTeets of vertical vibration and gravily in a large aspect ralio
conlainer in inveried position, namely, with gravily acling
downwards, The lingar stabilily ol the flal, rigid body oscil-
latory stalc was considered in Sce. [, where we oblained (he
instabilily (hresholds [or both short-wave and long-wavce per-
turbations. The laticr analysis was based on a standard long-
wave approximation (small horizontal gradients of the vari-
ables) that applies in the bulk, outside a boundary layer near
the lateral wall, which was analyzed in Appendix A to obtain
the appropriate boundary conditions for the solution in the
bulk. The resulting 2D linear eigenvalue problem was (of
fourth order and thus) somewhat nonstandard and of inde-
pendent interest; it was analyzed in Appendix B. The mar-
ginal instability curves associated with short- and long-wave
perturbations gave a nonvoid stability region in the param-
eter space (Figs. 2—4} similar to the one already found ex-
perimentally in Ref. [9] In particular, we have shown thal
the stabilizing clTect of vibration is similar to that of the
surlacc (ension, and more and more clfective as (he [orcing
frequency ingreases. Thus (he [orcing [requency has been
assumcd (o be appropriaicly large {(namely, ili¢ l[orcing pe-
riod small as comparced o (he viscous time) in (he remaining
part of the paper.

A weakly nonlinear, long wave approximation has been
made in Sec. 111, where an evolution equation for the free
surface in the absence of dry spots was obtained that applies
below the upper instability curve in Fig. 2 (and outside a
neighborhood of this curve); the latter condition implies that
short-wave perturbations are damped out exponentially and
can be ignored. This equation admits a Lyapunov function
that assures convergence to the set of the steady states. In
addition, we analyzed local bifurcation near the instability
threshold and showced that this is transcritical lor gencric
containers, and suberitical [or some rclleclion symmetric
{such as circular and rcclangular) cross scctions. The numeri-
cal intcgration of this cvolulion cquation, (¢ oblain Turther
propertics of the associaled dynamics, is oulside (he scope of



this paper. their interest would be considerable if a compari-
son with experiments were possible. But to our knowledge
(and surprisingly 1o some cxiend) no [urther cxperiments, in
addition to (hosc by Woll [8,9] arc available in the lilerature,

The analysis in Sces. 11 and 11 was cxtended in Scc. 1V 10
the casc of a hcavy Muid laycer over an immiscible lighter
ong, The instabilily threshold was obtained under gencral
assumptions, bul lor simplicily the cvolution cquation ac-
counting for weakly nonlinear dynamics was made only in
two limiting cases, namely, {a) when the viscosity of one of
the liquids is negligible and (b) when both viscositics and
densities are almost equal. The evolution equation was quite
similar {and exhibited similar properties) to that of a single
laver in case (a}, but it was somewhat different (e.g., it was
nonlocal) in case (b).

For illustration we have considered in Sec. IIB, a realistic
example (an inverted container 3 ¢cm wide filled with mineral
oil) in which the RT instability produced by the earth gravity
can be counterbalanced by a 10> Hz vertical vibration of the
container. The required vibrating frequency is much smaller
if either the comtainer is smaller or microgravity conditions
are considered. Similar applications could be made for the
iwo (luid layers case considered in Sce, 1V, butl they have
been omilled because there are no cxperiments in the lilera-
turc 1o compare with. These would be of greal inlerest once
the [fairly simple, as compared to (he original problem
(1.13—(1.7}] (hcory in this paper is available,
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APPENDIX A: THE BOUNDARY LAYERS ATTACHED TO
THE SIDE WALLS

For ihe sake of brevily and clarity, these boundary layers
arc analyzcd in detail only in the basic limil considered in
Sec. IIB. The analysis in the remaining limits is completely
similar as will be remarked at the end of this appendix. The
structure of this boundary layer is somewhat nonstandard
because, as it can be anticipated from Eqs. (2.26) and (2.30),
the normal component of the oscillatory velocity ai the edge
of this boundary layer is non-zero at leading order. This re-
quires that the oscillatory velocity remains of the same order
in the boundary layer as in the bulk and. consequently. the
oscillatory pressure and free surface deflection are much
larger in the boundary laver (where the oscillatory velocity is
not almost horizontal, as it is in the bulk} than in the bulk.
Thus we seck the expansions [¢f. Eq. (2.19}]

u=L 'u, e+ L Thoh+cc+/L fu+
v—L Yy e+ L hoh+ce+L v+,

w=L 'w e 1 L hoh lce I L w0 oo,
(A1)

p—[Pwtl "pale’™+L Choh+cc+l 'pot+L Cpg
+lf3p‘\_2+ e
f—L Yoo+ L hoh+cetfiptl "fato--.
where
7 siL. {A2)

& and s are coordinates along the outward unit normal to J(}
and along 201, respectively, and » and ¢ denote the associ-
ated components of the horizontal velocity u. Here f,; and

S arc allowed to depend only on €, » and { [defined by Eq.

{218}, as in Scc. UBJ, and w,,;, ug;, Uy Uy Wi Waps Poj
and p,; are allowed to also depend on z. Substitution of these
¢xpansions inlo Egs., (2.1}-(2.5) yiclds

pr)t'lg_poilz_pxt'lg_p.\'t'lz_px\’)'r,l_p.\'] g_p.ﬂz_p.\'] ’r,l_{].'

{A3}
Uone TWoor— 0, Uooget Uoos— Pote il
TWoaget Wousr— Polz—ow,g 0 (Ad)
if  eo<0&<0 and 0<<z<C1, with boundary conditions
Hon=Wo=0. if z=1 orif £=0, {A5})
Won—F@f 0T Upn T W~ 0 1M 270, {A6)

pol—aw2f§1/2+C 2f0055+2w90570 ifZ*O.\ (A7)
poiliamz./:\'()/z_.[ﬂlgg

=Pt ae (ot f)2+C “foee
0 i 20, (A%)

foofov st«f*fslg—i_ﬁO‘st?*Oorfsofoa if 5(:70': _
(A9}

where

Do=D/L".
The problems giving v, and (i, ,v,.% ) are decoupled
and need not be considered. Using Egs. (A3), (A8}, and (A9}
we obtain

pr;t'l:poil( 7],~?),~ P.\-():P.\-()(?),« .f:\'t'l:‘f:\'()( . F)«

where

stfO':

if the second boundary condition (2.5} applies; in this case,
we only need to apply matching conditions with the solution
in the bulk to obtain the Dirichlet boundary condition in Eq.
{2.26).

If instead the first boundary condition {2.3) applies then
we obtain Eq. (2.27) as follows. The oscillatory velocity
components u,, and w,, are given by Egs. (Ad}—(A7} and



the following matching conditions with the solution in the
bulk [compare Eq. {2.19) with Eq. {Al} and use Eq. (2.30}].

w0~ i{ao/2)[1—{cosh Vi) ™" cosh Viwz]f; —0,
S0 and w,,—{0 as £ —®,

Using this and Eq. {A6) in the equation that results when the
continmity equation in Eq. (Ad) is integrated in — %<2 £<20,
{l<<z<Z1, we obtain

i R — 4
0 . af sinh viw .
foO‘f5+5 l—’,_i—hi lim fsl.ffo-
—a \ viw coshvyio/ i~ «

{AL0)

On the other hand. matching conditions with the solution in
the bulk require that f,, be bounded as §— — <, which in-
voking Eq. (A3} and the last expression in {A8) vields

Ps@*o-

Thus we only need to integrate the last equation in Eq. {A8)
and use Eq. (A9) to obtain

o - o . - .
lim fm D @0 [ (o Tt

£——m

(A11)

and invoking Eq. (A10) we oblain

lim - _ﬁfso?~

e —m

where D=20,/[2 1 a*w*C*$(w)], with the function ¢ as
defined in Eq. (2.28). And we only need to apply matching
conditions with the solution in the bulk to obtain the Neu-
mgnn boundary condition in Eq, (2.26),

The analysis above stands as w—se and as a weak non-
lingarity (as that in Sec, I} is included; thus the boundary
conditions (3.9) lollows. And the analysis is straightfor-
wardly cxiended when a lower liquid layer is added, as in
Sce. 1V, 1o oblain the boundary conditions (4.19).

APPENDIX B: LINEAR STABILITY OF THE FLAT STATE

The stability of the flat state f,=0 of Egs. (2.35) and
(2.36) is analyzed as usually, by replacing 7, by F(x,v)e?’
to obtain the linear eigenvalue problem

AU=pF. AF I ZNF=U in (0. (BI)
aFion——uBF or K—0, s0/an—0 on aQ,
fjdjr"dffo, (B2)
i

where

N—2BLY[2+ a2 w  p{w)C?],

w6 L2+ a0 Hw)C?]. B—DH6CPLY).

If the second equation in Eq. (B1) is substituted into the first
one then we obtain a fourth order. linear eigenvalue problem.
But instead, for convenience, we consider the linear problem
posed by the first equation in Eq. {B1) and the second bound-
ary condition in Eq. (B2). which uniquely provides U7 in
terms of [, in the form

/= wG{F) + consl, (B3)

where G is the Green operator associated with the problem

—AU-F inQ. aU/on—0 on &€, J‘H(jdfd_f'fo,
0
(B4}

dehined as G(#)— /. Nole that ¢ is a scll-adjoint, compacl
operalor in X —{# e /,(Q): [aF dxdv—0}. Also ¢ is posi-
tive, namely. | 5FG(F)dxdy=0. In fact.

J _FG(INdxdy =k, f _|F|Pdxdy. (B3}

& i

where £, 0 is (he lowest cigenvalue of G; or, cquivalently,
kg '=>0 is the lowest, strictly positive eigenvalue of A in
€1, with Neumann boundary conditions ai 4£1.

Now, replacing Eq. {B3) inlo the second equalion in Eq.
{B1) and using Eq. {B2) we rewrite Eqs. (B1) and (B2) as

A+ 2 — G+ const in (1.,

Ffan— — ufk ork—0 on 4,

fﬁﬁ'dﬁzjf—u. (BG)
Thus z+ can be also calculated as a generalized eigenvalue of
this problem. Since & is compact. self-adjoint and satisfies
Eq. (B3}, the spectrum of this problem is readily seen to be
real, discrete and bounded above [26]. And using standard
variational arguments [26,27], the largest eigenvalue of this
problem is found to be given by

f-[W”FF NF2)dxdy
19

— Mo — min with
Fery f FG(F)dxdv+ B f s
Q Al
)f‘l—{ e ll'(0): Ni*'d;df—()) (B7)
[$)

if the first boundary condition in Eq. (B} holds, where s is

an arch length parameter along o€} and ' (£)) is the Sobo-
lev space of those functions that, together with their first

partial derivatives, are square integrable in ). And
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[ v

NF2)dxdy

with

— Mo — min

Furs ﬁfwg(ﬁ‘)d?ﬂiﬁ
0

}f'g—{Feme;J_Fd,’\?czﬁ—o, F=0on aﬁ]
a1

(BS)
if the second boundary condition in Eq. (B6) holds. Note that
because S=0 and Eq. (B3) holds, the functionals that are
minimized in Eqs. (B7} and {B8) are bounded and continu-

ous (in fact, analytic). Since, in addition (a) g —0 is an ei-
genvalue of Eq. (B6} if and only if

AF 1 NF=constin £}, aF/on=0 or F=0 on (i,

f _Fdxdy=0 (B9)
19

has a nontrivial solution, and (b) the lowest eigenvalue of
this problem is given by

9T didy j |V drdy

0O 4]

0T A, min

ety f _FRdvdy
i

(B10)

A, — min
Feh J PP dxdy
{

depending on whether Eq. (B7} or (B8} applies. we obtain
the following property, which is the object of this appendix.

Property B1. If N<{\ then all eigenvalues of Egs. (Bl}
and (B2) are strictly negative. and if N>\, then Iigs. (Bl)
and (B2} possesses a strictly positive eigenvalue.

Proof. The first assertion follows from Egs. {B3), {B7)
and (B8}, and (B10). And the second assertion follows from
the first one because, according to the characterization (B7)-
(B8}, 1y (i) depends continuously on X and (i) strictly in-
Creases as A INcreases.

APFENDIX C: LOCAL BIFURCATION FROM THE FLAT
STATE AT THE INSTABILITY THRESHOLD
Here we consider the general problem

[1=HNA+ N —H' (N|V*/2—const. in £},
{CL)

afion—0 or f—0 on &€}, fmfdfd}fo, (C2)
19

where £/ 15 a €7 lunction such that

H(0)=0. (C3)
For approprialc // this problem includes as parlicular cascs
thosc providing (he sicady sialcs of Eqs. (3.14} and (3.15),
(4.29} and {4.30), and (4.42} and (4.43). The lincarization ol
Eqs. {(Cl} and {C2) around the solution /=0 leads to Eq.

{B9). Let us consider a simple eigenvalue of this linear prob-
lem, A,. Local bifurcation of Eqs. (3.3} and (3.4) at A =k, is
readily analvzed by the Lyapunov-Schmidt method [28] as
follows. Let us replace Egs. (C1} and {C2) by

(=1 (NJAS+ N =11 (NDIV 22— const+ T{e,s) Fy,

with f—<{#,+ ) and A=A, +=s, inl),  (Cd)
affon=0 or f=0 on o).
J fdxdy— J R dxdv—0, (C5)
{1 {1

where £, is an cigenfunclion ol {BY) associalcd with (he
eigenvalue A, such that

f _Frdxdy=1. (C6)

I

This problem coincides with Eqs. (C1) and (C2) if
I'{e.5)-0; {C7)

thus this equation is called bifurcation equation. Now, the
extension of the implicit function theorem to Banach spaces
[29], applied in an appropriate function space [e.g., the space
H3(£1) of those functions that together with their first and
second spatial derivatives are in Z,({1) and satisfy Eq. (C5}].
implies that Eqs. (C4} and {C3) uniquely provides  and I,
as C™ functions of & and <, for all sufficiently small & and 5.
and that ¢—10 and T'—0 il s— 0. Then thosc functlions can
be written, through a Taylor expansion, as

wr=s{sin | qifs | g74fs 1),
T=g{el; I s 18°T51 ), (C8})
and substitution of these into Eqs. (C4) and (C3) vields

A+ N, — (1", — 1)}7,+ const, (C9)

Ay + Mgty — Do d?o+ H(OW(|V I o> 2+ 1A 17y) + const,
(C10)

Aifrg | Noa=T3F 0 | H'{OWV tfey VFo | Foliprs | 1 AF)
+H (O IAF + 17|V 17|12

+const in €2, {C11}
A 10— Dy 1an — Gl fdn — O or

W —tn— i, —0 on €1,



Fixed conlact line (a)

~ Free contact line (b)

10 d 10’

I'[{3. 5. The constants appearing in lig. (C18) when {1 is the
square ol sides 1 and 4. The allachmenl mode ol the contacl line
([ree or [ixed) is indicated.

J" if!](l‘;d;: J"FO i d;d;: f" if!zd;d}’;
0 LD 0

= J Ty dxdy = f _ihsdxdy
LD 0

= Jl i[13F0d;(i17: 0.
k1

These three nonhomogeneous, singular linear problems are
rcadily scen o be associaled with scll-adjoint operaltors, and
they have a solution il and only il the right hand sidcs of the
three equations in Eqs. (C9)—(C11) are orthogonal to .
with the inner product of L,({}). This solvability condition
vields

rl_l.,

2+ F A dxdy

Iy~ —H'(0) fﬁFoUVmFo

—3/['(())h0f~ﬁ‘gc!§c{;/4, (C12)

1)

I.=

>

fﬁFO[H’(O])(ﬁrﬂ_jVFO | Folups | h2AF,)
{

+ H"(OWIEAT  + I o |V | 12]dxd v, (C13)

where we have taken into account Eq. (B9) and the expres-
sion

Ay f Fldxdy= f FRFdxdy
O 0
- [ IR (9@EaEE

—2 JmFolﬁFo‘zd;C{;,
19

which follows from Eq. {B9) upon integration by parts. Thus
I'; is gencrically {lor domains ol arbitrary shapc) nonzcro
and, according 1o Eq. {C8), the bifurcation is generically
transeritical. But for some symmetric domains, like the
circles and reetangles considered in Sec. 11, il &, is (he low-
¢st cigenvalue ol Eq, (B9}, then £, is antisymmelric and T'5
vanishes. In this case. i is uniquely given by

W =H' (0¥, (C14)
where ¥ is the unique solution of

AW+ W — |V, 224 17, A+ const in), (C15)

d¥/an=0 or ¥=0 on 1.

(C16)
f iy f IR0
Q Q
And invoking Eq. (C13) we obtain
F}Z[H’(O)]Zl—‘;] | H‘”(O)F}z.’lz, (Cl7)

where the constants T'5; and T's, are given by

1‘31 — fNFU(VW VFO+F05W+WKFO)Cf;(f;
{2

Iy I~F0(F%5FO+F0|7F0|2)dfa’__17/2 (C18}
Lo}

and depend only on (he domain €& and on (he boundary
allachment mode of the contact line, namcly, on which

boundary condition is usced in Eq. (3.7). [n particular, il 0
:ﬁl is the circle of diameter 1, then

T.,=11.42 and T;=14.78 (C19)
lor [rec contact ling, and
113124.20 and 113223.79 (C20)

for fixed contact line. as obtained from Eq. {C13), where 7,
is to be taken from Eqgs. (2.16} and (2.17) [and rescaled to



satisfy Eq. (C6)] and « is obtained numerically from Eqs.
(C14)—(C16). Similarly, if €}, is the square of sides 1
and <=1 then these (wo constants are found (0 be as plotied
vs o in Fig. 5.

Now, according to Eqs. (C19) and (C20} and Fig. 5. the
constants I';; and Ty, are sirictly positive in boih circles and
reclangles, Tor both [ree and fixed conlact lincs. And using
(C17), T'y=>0 in all these cascs il /77¢0)=0. And, according

to (C8) and the first expression in (C12), if I';>0 then the
bifurcated solutions [given by the bifurcation equation {C7)]
exist for e=x A <<0, which means {Property B1)} that the
bifurcation is subcritical. Thus we have the following

Property C1. [f H'(0)=0 and {} is either a circle or a
rectangle, then the bifurcation at N—h, is a subcritical
pitchfork one.
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